
Further Open Problems

in Membrane Computing

Gheorghe PĂUN

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

and
Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
Technical Higher School of Computer Science Engineering

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: gpaun@us.es

Abstract. A series of open problems and research topics in membrane com-
puting are pointed out, most of them suggested by recent developments in this
area. Many of these problems have several facets and branchings, and further
facets and branchings can surely be found after addressing them in a more
careful manner.

1 Introduction

The main goal of this note is to challenge the reader–participant to the second Brainstorm-
ing Week on Membrane Computing, Sevilla, February 2004, if not to address the problems
themselves which follow, at least to formulate and circulate his/her own favourite research
topics, thus enhancing the cooperation in this area (in particular, during the Brainstorm-
ing).

Open problems can be found in many papers dealing with P systems, sometimes not
explicitly stated; for instance, the general question of improving computational power or
computational complexity results from the point of view of various descriptional complex-
ity measures can be formulated with respect to many (if not all) results from the literature.
This concerns not only the “standard” question about the number of membranes, but also
the number and the size of rules, the number of catalysts, promoters, etc. Comprehensive
lists of problems appear in [19], as well as in [7] and [20]. In [20] one states 39 open prob-
lems – several of them partially or completely solved in the meantime (a useful paper could
be one presenting the state-of-the-art of all these questions, with the progresses made since
the publication of the book, and the problems suggested by the related developments).

The problems below are either different from those from the sources mentioned above,
or presented from a new angle and with new motivations and related references. Some of
them are precise technical questions, some others are rather general (research topics, some-
what vaguely formulated; more precise formulations will already be a first step towards
answering these topics).

354

In what follows, we give references only for papers which are not already present in the
bibliography of [20]; most of these new papers are available, in most cases in preliminary
versions, at http://psystems.disco.unimib.it; in general, the reader is adviced to
consult this web page for news of any type in the membrane computing area.

2 Determinism Versus Non-Determinism

We start with a very important question for automata and language theory, for com-
putability in general, and which was only partially addressed in membrane computing:
the power of non-determinism, the difference (mainly in what concerns the computing
power) between deterministic and non-deterministic systems.

Because of the biological inspiration, P systems were introduced as inherently non-
deterministic devices and in most papers they were considered in this form. Restrictions
about the branching possibilities were considered first when devising membrane computing
solutions to decision (and, later, numerical) problems. The first restriction was to confluent
systems, which, after possible unrestricted branchings, converge to a class of “similar-and-
meaningful” configurations, or even to a single specified configuration, which ensures a
sound answer to the problem. Then, deterministic systems in the standard sense were
considered and constructed (see [23] and many papers of the Sevilla team, O.H. Ibarra,
etc.).

An important distinction should be made here: when dealing with generative P sys-
tems (with the output associated with halting computations only) the determinism is a
strong restriction, leading to non-interesting systems, which either always halt in the same
configuration (thus producing a single output) or always diverge (thus producing nothing).
The case of accepting/recognizing systems is different, because, in some sense, the non-
determinism is moved into the environment, it is “in charge of the user”: the computation
starts from any given input, which is accepted or not, according to certain conditions (e.g.,
by halting).

This observation suggests a first research topic: what about considering deterministic
generative P systems, with the output defined in such a way to have non-trivial computing
devices? The immediate idea is to remove the halting condition, and to collect outputs in
a different manner, even from computations which never halt. Suggestions from the area
of deterministic L systems can be useful. A possibility was used in a different framework
in [1]: working with string-objects with replicated rewriting, and sending strings out of
the system at any moment; because of the replication, other strings remain inside, and the
computation can continue. Not so clear (hence more challenging) is the case of symbol-
objects. Signaling the moments when a number (for instance, of objects present in a given
region) is to be considered as “computed” by means of the appearance of certain objects
(signals) can be a possible way to obtain a meaningful definition (such signal-objects were
used, e.g., in [15]).

Having in mind the restricted generative power of, e.g., D0L systems, it is highly
possible that deterministic generative P systems of many types will not be computationally
universal, and this would add to the interest for such systems.

As we have mentioned above, determinism is natural for accepting systems. With
motivations related to “computing beyond Turing”, such systems were considered in [6],
where universality proofs were given for deterministic P systems (with symport/antiport).
The problem was further investigated in [14], but still there are many classes of P systems
for which it remains to be addressed. A challenging case is that of accepting P systems

355

with catalytic rules. In the generative (non-deterministic) case, two catalysts are know to
suffice in order to get universality – see [13], [12]. Are the accepting deterministic catalytic
P systems universal? How many catalysts are needed?

This question suggests a general problem of a clear interest: find a class of P systems,
of any type (generative or accepting), for which the deterministic systems are strictly less
powerful than the non-deterministic ones. A positive answer to this question (for a class
of P systems already considered in the literature, or defined in a natural/honest manner)
would be rather sound and would surely have interesting consequences.

In what concerns the way of introducing the input to be accepted/recognized (hence
the way to relate the external non-determinism, coming from the environment/user, with
the computation), it is important to mention that besides the two standard ideas, of (1)
introducing the number/string to be recognized in a specified region of the system, and to
trigger in this way the computation, or (2) considering the sequence of objects/multisets
taken into the system during a computation (see, e.g., [10]), an alternative was proposed
in [14]: considering signals. In the case of one signal, a special object s is distinguished,
not present in the system or in the environment; the computation starts (in step 1) and,
if object s appears in the environment in step t+1, then the number t is to be recognized.
In the case of two signals (different or not), the number of steps elapsed between the
occurrence of the two signals is the number to be recognized.

Any other way of introducing the input to be analysed by a P system?
A special case is that of symport/antiport P systems with the result of a computation

being the (coding) of the trace of a distinguished object. What about accepting-like trace
P systems? We work with symbol-objects, hence the “standard” input cannot be anything
else than a number (of objects introduced in a given region, or defined by means of signals);
the result of a computation is a string, hence in this way we relate an input number n to
an output string wn. We get a sort of transducer, mapping numbers to strings. Which are
the properties of such devices? Does the determinism imply a proper decrease in power?

We are convinced that the study of determinism in membrane computing is an impor-
tant topic, not only natural from a mathematical point of view, leading to many technical
questions (only part of them mentioned above), but also from the point of view of appli-
cations, for instance, in modeling and simulating biological phenomena/systems.

3 Neural-Like P Systems

This is another general research topic of a clear – theoretical and (possibly) practical –
interest. Both the cell and the brain are two masterpieces/miracles of live, especially when
considering them as computing machineries; bridging their mathematical–computational
approaches could be a great achievement.

Membrane computing has started with a cell-like model, and tissue-like and neural-
like models were introduced some years later, when the people working in this area were
“busy” with the initial model, hence the new variants have not raised yet the same interest,
despite of their generality and versatility. On the other hand, it is rather clear that what
are called now “neural-like P systems” are not the most appropriate models, they do not
capture the most significant (computationally useful) features of neuronal networks and
brain organization.

We do not debate here too much this research topic, as it is quite general, and needs a
more detailed biological preparation, but we only mention some possibly useful features to
be captured by the model to be defined (these features are considered both having in mind

356

a “black-box” interpretation of the brain and the existing neural-like P systems, which miss
such features). First, it seems necessary to deal with a large number of “neurons” (cells,
with or without an internal structure, hence a hierarchical arrangement of membranes),
maybe not all of them simultaneously active. (What “non-active” could mean is a matter
to define: inhibited because of certain specified conditions – predicates on the contents
and/or the environment, or without objects to process, or, in the case of moving rules,
without rules able to process the available objects, etc.) Then, of a definite interest would
be to have dynamically defined synapses; the channels between cells (one-way or two-way
channels?) should be established according to the needs of communication, changing from
one step to another step. Then, what about having durations of synapses, strenghts,
classes of synapses (temporary, permanent, of specified duration)? For instance, in terms
of symport/antiport rules, we can consider rules of the form 〈i, x/y, j〉k, with the meaning
that a synapse is created among cells i and j, when interchanging the multisets x and
y among the two cells, and the synapse will last k steps. An existing synapse can be
used by any number of standard rules (i, u/v, j), (i, u, j), (j, u, i), but only in the k steps
after creating the synapse. For each pair (i, j) a constant Ki,j can be given such that, if
this channel is used at least Ki,j consecutive steps, then the synapse remains established
forever. Learning can get in this way a counterpart/meaning. Of interest could be to also
have some time delays associated with the communication channels, so that much used
synapses will pass more rapidly the “messages” (objects) from a cell to another one, thus
speeding-up the computation. Other constants could be associated with the cells (the
“neurons”) themselves, for instance, expressing the maximal number of objects which can
be accommodated by a cell, or the maximal number of rules which can be simultaneously
applied in a cell.

These capacity limits look rather realistic, and can probably lead to PNN (“periodically
needed nap”) theorems of the following type: systems of a given class can avoid deadlocks
(or “damages”, to be suitably defined, having in mind the fact that the neurons can “die”
during the life of an organism, certain “diseases” are possible, etc.) only if from time to
time the “externally useful” work is replaced with some “internal cleaning” sequences of
steps1.

Besides the mathematical and computational interest, a more elaborated neural-like
membrane computing model would be important also for applications, not only in biology,
but, presumably, as a model of distributed computing – the internet included.

4 Links with Ciliates

One of the most intriguing “computations” held in nature is that done by ciliates, during
their reproduction. The permutations of genes in macronuclei–micronuclei are exquisite
list processing operations of a surprising power and complexity. Convincing details can be
found, e.g., in [18] and, especially, in [11]. In particular, several inter- and intra-molecular
operations were proposed in the above mentioned papers (see also their references) for
explaining the gene unscrambling and assembly in ciliates.

Ciliates are unicellular organisms. Up to now they were interpreted as single membrane
structures, which is not exactly the case in reality. What about “marrying” membrane
computing and “ciliate computing”? The first suggestion is to use ciliate–inspired op-
erations with strings in handling string–objects in P systems. Which combinations of

1Such PNN theorems would be greeted at least by the author of this note. . .

357

operations (in what kinds of membrane structures) lead to universality? Then, a ques-
tion of a possible interest from a biological point of view is to have a look at the ciliate
structure, distinguishing the compartments of their cell–body and the specific operations
(including the way of communicating among compartments), and to define a suitable
model of this structure. The third issue of interest is to use ciliate-like P systems as com-
puting devices, adding parallelism (and/or further ways to get speeding-up features, such
as an exponential workspace) in such a way to solve computationally hard problems in
a feasible (polynomial) time. This last idea could hopefully be related to the possibility
to “implement” ciliate-P-systems in real–ciliates, thus dreaming at using ciliates as living
computers2.

5 Sevilla Carpet

The time and the space are the main computational complexity measures in both sequential
and parallel computing – with the communication complexity also becoming important in
parallel (distributed) computing. The time–space duality (materialized, for instance, in
trade-off results) is a common sense topic, but still raising mathematically interesting and
practically important questions. How much can we trade time for space, or conversely?
Is there a sort of minimal threshold for their product in a given circumstance (for a given
problem)?

In order to address such questions in membrane computing, the so-called Sevilla carpets
were proposed in [8], as extensions of the Szilard language from language theory: with
each computation in a given P system one associates a rectangle, with the time on the
horizontal axis, and with the membranes and the rules from each membrane written on
the vertical axis; the membranes are ordered in a given way, and also the rules of each
membrane are written in a given order; then, the rules used in a step of a computation
are indicated in the vertical line corresponding to that time unit. There are several ways
of specifying the used rules: writing 0 for “not used” and 1 for “used”; also specifying
the number of times a rule is applied in a given step (depending on the multiplicity of
objects to which the rule is applied); using, moreover, a dash for rules which cannot be
used, 0 for rules which can be used but are not applied in a given step (because of the
non-deterministic use of rules), and 1 or a number (of applications) for rules which are
used; associating weights to rules, etc. Further details can be found in [8].

Then, the weight of a carpet (the sum of all its entries) gives an indication on the
time–space complexity of the computation. Moreover, several characteristics of the com-
putations and of P systems can be identified by means of the carpets. We only point out
some of them here, in many cases just recalling their formulation from [8].

First, the important issue of the combined space–time complexity can be investigated
in this case. Given a system Π, we can look for an equivalent system Π′ which computes the
same set of numbers, in a more efficient way from the space–time complexity point of view.
Are there general speed-up theorems, of the form “if N(Π) is infinite, then a linearly faster
(as the surface of the associated Sevilla carpets) system Π′ can be constructed equivalent
with Π”?

Then, as it is pointed out in [8], the carpet can indicate the “degree of non-
determinism” of the system (in the case when we distinguish between rules which can

2The above ideas are not all and not completely new: the membrane–ciliate combination is the topic of
a research project recently started in Leiden University, The Netherlands, while parallelism in ciliate gene
unscrambling was already considered in [16].

358

be applied but are not, and rules which cannot be applied), and this degree can get a
numerical value for each computation. Maybe the ratio of the number of entries 0 and the
number of all entries different from “−” can be an accurate measure of non-determinism;
this is a feature not so easy to measure in any type of non-deterministic computing systems.

Still more attractive can be to use the carpets in an “operational” manner. A first
step would be to observe the “bad characteristics” of a system (just one example: if
we have components which work only a few steps, then this indicates a non-fair loading
of components, and a small degree of coordination/parallelism), and to try to change
the system, improving its behavior. Furthermore, we can pass from just collecting the
carpets associated with the computations of a system, to using them for controlling the
functioning of the system, in the same way as one can pass from the Szilard language
associated with a grammar to a control language which regulates the derivations with
respect to a grammar. More precisely, we can consider pairs of the form (Π,K), where Π
is a P system and K is a language of carpets with the rows associated with the membranes
or the rules of Π; only those computations in Π are accepted which have the Sevilla carpet
in K. From the computability power point of view, this approach is of interest only for
weak (e.g., non-universal) classes of systems Π and for types of carpets K which are easy
to describe/generate.

This makes necessary to consider ways to describe/generate the carpets, hence to link
our framework with that of two-dimensional languages. Actually, this link is two-fold: on
the one hand, we need “simple” carpets for controlling the behavior of P systems (here
“simple” could refer, for instance, to the Chomsky hierarchy of array grammars, or to
other classifications of two-dimensional languages), on the other hand, we can consider
the P systems themselves as generating two-dimensional languages (like in the case of
Szilard string languages, which are by-products of usual grammars). For instance, which
types of classic picture generating mechanisms can describe the carpets corresponding to
a P system of a given type? Of course, the language of carpets is of interest only for the
cases where the alphabet of symbols which mark the pixels of the two-dimensional picture
is finite, for instance, consisting only of 0 and 1.

We have not considered here the case where the rules themselves have a weight, a cost;
a natural possibility is to take the number of symbols handled by a rule as a measure of
its cost (for u → v we take |uv| as the cost of the rule, which reminds the measure Symb
from the descriptional complexity of context-free grammars). This case provides further
information about the time–space complexity of a computation.

In the same way as above, we can define the Sevilla carpets for P systems with sym-
port/antiport rules (the weight of a rule is clear also in this case).

A non-trivial question seems to be the definition of Sevilla carpets for P systems
with the possibility to produce new membranes, by membrane division or by membrane
creation. If we want to take into consideration all membranes existing at a certain time,
then we either have to add new rows to the carpet during the computation, or we have to
provide in advance “dummy rows” (with entries of a new type, for example, [, as a notation
for “blank”), where the newly created rows will be accommodated. A compromise could
be to consider in the carpet only the types of membranes, one membrane for each type,
irrespective of how many copies of each membrane exist at a given moment; this idea is
supported also by the fact that the types are known in advance, and each membrane of a
given type has a set of rules specified in advance; in each step, for each rule, we have to
sum-up all applications of that rule in all copies of the corresponding membrane.

Of course, further related questions and research topics can be formulated, but we

359

conclude by expressing the belief that the Sevilla carpets associated with a P system
deserve a careful investigation, both as a source of data about a given system and about
its computations, and as a way to define controls on the functioning of a system.

6 Traces Revisited

Defining the result of a computation by taking into account the itinerary of a specified
object through the membranes of a P system (with symport/antiport rules) is a rather
“exotic” idea, pointing out to a more general problem: how the input/output of a compu-
tation can be defined? In Section 2 we have mentioned several possibilities for introducing
the number to be recognized by an automaton-like P system. Some variants were consid-
ered also for the output: internal, external, traces. A few papers have also taken the tree
structure as the data to handle, thus defining the input or the output of computations in
terms of trees (possibly, of certain codifications of them).

Anyway, both the general question of considering new ways of defining the in-
put/output of a computation, and the question of further investigating the trace languages
remain of interest.

For instance, because each membrane visited by the traveller–object can contribute
with at most one symbol to the alphabet of the computed language, an infinite hierarchy
on the number of membranes is obtained in a trivial manner: languages on an alphabet
with n symbols cannot be generated by systems with less than n membranes. This result
is based on the fact that we use only one traveller–object. A change can be obtained if
we distinguish several travellers, say, t1, t2, . . . , tk; for each pair (traveller ti, membrane j)
we get a different “event” (the introduction of ti in membrane j), in total, km events, for
m being the number of membranes. In each time unit, a subset of the set of travellers
are crossing membranes, hence we can have 2km different “combined events”, with which
we can associate distinct symbols. Still, the infinite hierarchy on the number of mem-
branes is directly obtained by considering languages over alphabets with larger and larger
cardinalities.

A more promising idea is to consider one traveller and to allow the change of la-
bels of membranes. For instance, we can consider a list M of possible labels (hence
types of membranes), and rules of the following forms: (x, in|j), (x, out|j) (symport), and
(x, out; y, out|j) (antiport), associated with membrane i; after using such a rule, the label
of the membrane changes from i to j – and now the rules associated with the membrane
with label j are applied. In this way, in each moment the system can have a small number
of membranes, with labels from a larger list, hence the itinerary of the traveller across
these membranes is described by a string over an alphabet with a number of symbols of
the size of the number of labels. Therefore, the hierarchy on the number of possible labels
is again proved to be infinite in an easy manner – but with how many membranes present
in a given moment in the system?

An interesting question (recently formulated by M. Ionescu – personal communication)
is to relate trace languages generated by P systems to so-called Gauss codes [17]. These
codes are actually the traces of a traveller–point along a closed curve which intersects itself
in points of simple intersections; these points are marked and the code is the sequence of
the point–names. The similarity with the case of trace languages is obvious – but also the
differences are clear. Any connection between the two notions seems both non-trivial and
of a mathematical interest.

360

7 Removing Polarizations

The previously mentioned idea of changing the labels of membranes is very powerful,
because the labels can be used as a place to store an information useful for the computation.
A convincing example: instead of associating polarizations to membranes, we can allow
the change of labels; considering labels of the form (l, p), where l is a “usual” label and
p ∈ {+,−, 0} is the polarization, we can avoid using explicit polarizations. This idea
was already examined in [3], [2], where the problem of removing polarizations from P
systems with active membranes was addressed. Several results were obtained in [3], [2], of
the following forms: (i) Systems with polarized membranes can be simulated by systems
without polarizations, with the possibility of changing labels of membranes by rules of only
one of the types (b) (= introducing objects in a region, (c) (= sending an object out of a
membrane, (e) (= dividing a membrane); (ii) Universality can be obtained in many cases
of using systems without polarizations and with label changing possibilities; (iii) Hard
computationally problems can be solved by systems without membrane polarizations and
with label changing possibilities. In each case, several problems have remained open –
we refer the reader to the mentioned papers for details. Among the most interesting
questions we consider those about solving NP-complete problems in polynomial time by
means of systems without polarizations and “paying instead a small price”. The “price”
here refers to using label changing, or division of non-elementary membranes, or using
non-deterministic confluent systems, maybe constructed in a semi-uniform manner. Can
these additional features be completely avoided? Which is the power and efficiency (which
families of numbers are generated and which complexity classes are covered/characterized)
by P systems with active membranes, without polarizations, and without label changing?

8 Membrane Creation Revisited

In the same way as cell-like P systems have attracted much more attention than tissue-like
and neural-like P systems, the membrane division was much more carefully investigated
than membrane creation as a way to obtain tractable solutions to hard problems. How-
ever, membrane creation is both mathematically and biologically attractive – and polyno-
mial/linear solutions to NP-complete problems were obtained also by means of P systems
with symbol–objects and membrane creation. The solutions from [20] are based on con-
fluent systems constructed in a semi-uniform manner. Can these results be improved?
What about solving other problems than SAT and HPP – the two considered in [20]? In
general, an immediate research topic is to consider the whole research program carried out
for P systems with membrane division and to repeat it also for systems with membrane
creation (starting with the formal definition of their syntax and semantics, as done in [23]
for systems with membrane division).

A possibly interesting question is suggested by the fact that P systems with membrane
creation are not universal (Theorem 7.3.1 in [20]). What further ingredients are to be
added in order to get universality?

9 Two Technical Problems

In contrast to the generality level of the previous problems, we pass now to two more
precise questions.

361

The first one refers to the universality of P systems with minimal symport/antiport
rules, that is, with rules of the forms (a, in), (a, out), (a, out; b, in), where a, b are symbol–
objects. Surprisingly enough, such systems with nine membranes were proven in [4] to be
universal. The result was improved first to six membranes, then to five – this last result
is from [5], where also the problem was formulated whether or not this bound is optimal.
More generally: which is the size of families of numbers computed by P systems with
minimal symport/antiport rules with 1, 2, 3, 4 membranes? What about adding some
control features on the use of rules, such as promoters or inhibitors (which is the number
of membranes which ensures the universality in such a case)?

A related topic concerns the trace languages generated by P systems with minimal
symport/antiport rules? (Because the movement of the traveller should be controlled by
other objects from the system, and the only possibility now is to exchange the traveller
with another object through a minimal antiport rule, it is highly possible that we do not
get universality.)

Let us now pass to another unexpected result from membrane computing, the univer-
sality of catalytic systems (thus solving the first problem from [20], and having implications
on several other open problems from the book), even for the case of using only two cat-
alysts. In the systems used in [13], [12], the same catalyst c can assist several objects
to evolve, that is, the number of objects a for which we have rules of the form ca → cv
is arbitrary. An immediate suggestion is to bound this number, that is, to consider a
constant H such that h(c) ≤ H for all catalyst c, where h(c) = card{a | ca → cv is a rule
of the system}. A trade-off is expected between the number of catalysts and the threshold
H. Problem: find pairs (H, cat), where cat is the number of catalysts, for which we have
universality. Which is the smallest H for which we get universality, by means of systems
with an arbitrary number of catalysts?

10 The “Pink-World” Postulate

All previous problems were rather “classic”, both mathematically speaking and from the
point of view of membrane computing; the one which follows is, instead, an informal
suggestion toward a possibly new approach of problem solving in such frameworks as
DNA and membrane computing, where we can rely on a large population of “molecules”
when looking, in a parallel manner, for the solution. The idea was already formulated in
[21], we just recall it here in a brief manner, with some additional proposals (and with a
new name. . .).

The starting observation is that there is a striking difference between classic computer
science (complexity theory included), based on (assumed) deterministic functioning of
computers, and bio-computations, as carried in DNA computing and as imagined in mem-
brane computing: if we have “enough” molecules in a test tube, then all possible reactions
will actually happen. For instance, assume that we have some copies of an object a and
two rules, a → b and a → c, in the same region. Then, some copies of a will evolve by
means of the first rule and some others by means of the second rule. All combinations
are possible, from “all copies of a go to b” to “all copies of a go to c”. In biology and
chemistry the range of possibilities is not so large: if we have “enough” copies of a, then
“for sure” part of them will become b and “for sure” the other part will become c. What
“enough” can mean depends on the circumstances. At our symbolic level, if we have two
copies of a we cannot expect that “for sure” one will become b and one c, but starting
from, say, some dozens of copies can ensure that both rules are applied.

362

In our framework, we formulate this optimistic point of view (let us call it the pink-
world postulate) in the following way: if we have enough objects in a membrane, then all
applicable rules are actually applied in each transition. Thus, the choices due to non-
determinism are restricted, if a rule can be applied, then it is actually applied – provided
that we have enough objects. The problem is to define “enough”. . . In [21], a “polynomially
optimistic” solution was proposed: if each combination of rules has polynomially many
chances with respect to the number of combinations, then each combination is applied. For
instance, in the case of string-objects, assume that in a given region we can distinguish
n combinations of rules which can be applied to the local strings (“combination” here
means sets of rules, with the number of times a rule is applied being ignored); then each
combination will be applied to at least one string, providing that we have at least n · p(n)
copies of the string available, for some polynomial p(x) specific to the system we deal with.
A P system having this property is said to be polynomially reliable.

The idea from [21] can be extended to exponentially, linearly, logarithmically reliable, or
even to constant–reliable systems, in the natural way, replacing the above polynomial p(x)
with a suitable function f(x). For instance, a deterministic system is constant–reliable,
with f(n) = 1, so of more interest is to assume this property for non-deterministic P
systems.

In [21] it was shown how polynomially reliable non-deterministic systems (with string-
objects and able to replicate strings of length one) can solve NP-complete problems in
linear time (this is illustrated for SAT).

Some possible ways to address the reliability property in mathematical terms were
suggested in [21]: give a fuzzy sets, rough sets, or probabilistic definition of reliability;
provide some sufficient conditions for it, a sort of axioms entailing reliability. Of course,
of a clear interest would be to investigate the usefulness of the pink-world postulate at the
theoretical level and its adequacy/limits in practical applications/experiments. Which is
the computing power of reliable systems of a specified type? Which are the implications
from the computational efficiency point of view? Further investigations in this area are
worth pursuing.

11 Final Remarks

As we have mentioned from the very beginning, this note is mainly a provocation for
the participants to the second Brainstorming Week on Membrane Computing, Sevilla
2004, both showing that there are numerous research topics in membrane computing
which deserve to be investigated, and suggesting to the reader to formulate, circulate,
and address such problems. The previous list is just a subjective and quick selection, with
rather preliminary formulations, most probably to be adequately changed after considering
these problems in a more careful way. Anyway, any reaction of the reader is very much
welcome.

References

[1] A. Alhazov, Generating classes of languages by P systems and other devices, Brain-
storming Week on Membrane Computing, Tarragona, February 2003, TR 26/03, URV,
2003, 18–22.

363

[2] A. Alhazov, L. Pan, Polarizationless P systems with active membranes, Grammars,
7, 1 (2004).

[3] A. Alhazov, L. Pan, Gh. Păun, Trading polarizations for labels in P systems with
active membranes, submitted 2003.

[4] F. Bernardini, M. Gheorghe, On the power of minimal symport/antiport, Pre-
proceedings of Workshop on Membrane Computing, WMC2003, Tarragona, GRLMC
Report 28/03, 72–83.

[5] F. Bernardini, A. Păun, Universality of minimal symport/antiport: Five membranes
suffice, Aspects of Molecular Computing. Essays Dedicated to Tom Head on the Occa-
sion of His 70th Birthday (N. Jonoska, Gh. Păun, G. Rozenberg, eds.), LNCS 2950,
Springer-Verlag, Berlin, 2004, 43–54.

[6] C. Calude, Gh. Păun, Bio-steps beyond Turing, CDMTCS Research Report 226, Univ.
of Auckland, November 2003.

[7] M. Cavaliere, C. Martin-Vide, Gh. Păun, eds., Proceedings of the Brainstorming Week
on Membrane Computing; Tarragona, February 2003, Technical Report 26/03, Rovira
i Virgili University, Tarragona, 2003.

[8] G. Ciobanu, Gh. Păun, Gh. Ştefănescu, Szilard carpets associated with P systems,
Proc. Brainstorming Week on Membrane Computing (M. Cavaliere, et al, eds.), Tar-
ragona Univ., TR 26/03, 2003, 135–140.

[9] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems. A Grammat-
ical Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.

[10] E. Csuhaj-Varju, G. Vaszil, P automata or purely communicating accepting P sys-
tems, in [22], 219–233.

[11] A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg, Computations in
Living Cells, Springer-Verlag, Berlin, 2004.

[12] R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems with-
out priorities: two catalysts are sufficient, submitted, 2003.

[13] R. Freund, M. Oswald, P. Sosik, Reducing the number of catalysts needed in compu-
tationally universal P systems without priorities, Proc. DCFS Workshop, Budapest,
Hungary, 2003, 102–113.

[14] R. Freund, Gh. Păun, On deterministic P systems, submitted, 2003.

[15] P. Frisco, The conformon-P system: A molecular and cell biology-inspired computabil-
ity model, Theoretical Computer Sci., 2004.

[16] T. Harju, I. Petre, G. Rozenberg, Parallel gene assembly in ciliates, EMCC Workshop,
Vienna, November 2003.

[17] L. Kari, S. Marcus, Gh. Păun, A. Salomaa, In the prehistory of formal languages:
Gauss codes, Bulletin of the EATCS, 46 (1992), 124–139.

364

[18] L.F. Landweber, L. Kari, Universal molecular computation in ciliates, in Evolution
as Computation (L.F. Landweber, E. Winfree, eds.), Springer-Verlag, Berlin, 2002,
257–274.

[19] Gh. Păun, Computing with membranes (P systems): Twenty six research topics,
CDMTCS Technical Report 119, University of Auckland, 2000.

[20] Gh. Păun, Computing with Membranes: An Introduction, Springer-Verlag, Berlin,
2002.

[21] Gh. Păun, Membrane computing: Some non-standard ideas, in Aspects of Molecular
Computing (N. Jonoska, Gh. Păun, G. Rozenberg, eds.), LNCS 2950, Springer-Verlag,
Berlin, 2004, 322–337.

[22] Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds., Membrane Computing 2002,
Lecture Notes in Computer Science 2597, Springer-Verlag, Berlin, 2002.

[23] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoria de la comple-
jidad en modelos de computación celular con membranas, Kronos Editorial, Sevilla,
2002.

365

