
Abstract Machines of Systems Biology
(Extended Abstract)

Luca Cardelli

Microsoft Research Cambridge
7, J.J. Thomson Avenue, Cambridge, CB3 0FB, UK
E-mail: luca@microsoft.com

Summary. Living cells are extremely well-organized autonomous systems, consisting of
discrete interacting components. Key to understanding and modelling their behavior is
modelling their system organization, which can be described as a collection of distinct
but interconnected abstract machines. Biologists have invented a number of notations
attempting to describe, abstractly, these abstract machines and the processes that they
implement. Systems biology aims to understand how these abstract machines work, sep-
arately and together.

1 Introduction

Following the discovery of the structure of DNA, just over 50 years ago, molecular
biologists have been unravelling the functioning of cellular components and net-
works. The amount of molecular-level knowledge accumulated so far is absolutely
amazing. And yet we cannot say that we understand how a cell works, at least not
to the extent of being able to easily modify or repair a cell. The process of un-
derstanding cellular components is far from finished, but it is becoming clear that
simply obtaining a full part list will not tell us how a cell works. Rather, even for
substructures that have been well characterized, there are significant difficulties
in understanding how components interact as a system to produce the observed
behavior. Moreover, there are just too many components, and too few biologists,
to analyze each component in depth in reasonable time. Similar arguments apply
also to each level of biological organization above the cellular level.

Enter systems biology, which has two aims. The first is to obtain massive
amounts of information about whole biological systems, via high-throughput ex-
periments that provide relatively shallow and noisy data. The Human Genome
Project is a prototypical example: the knowledge it accumulated is highly valu-
able, and was obtained in an automated and relatively efficient way, but is just the
beginning of understanding the human genome. Similar effort are now underway in
genomics (finding the collection of all genes, for many genomes), in transcriptomics
(the collection of all actively transcribed genes), in proteomics (the collection of all



74 L. Cardelli

proteins), and in metabolomics (the collection of all metabolites). Bioinformatics
is the rapidly growing discipline tasked with collecting and analyzing such omics
data.

The other aim of systems biology is to build, with such data, a science of the
principles of operation of biological systems, based on the interactions between
components. Biological systems are obviously well-engineered: they are very com-
plex and yet highly structured and robust. They have only one major engineering
defect: they have not been designed, in any standard sense, and so are not laid out
as to be easily understood. It is not clear that any of the engineering principles
of operations we are currently familiar with are fully applicable. Understanding
such principles will require an interdisciplinary effort, using ideas from physics,
mathematics, and computing. Here, then, are the promises of systems biology: it
will teach us new principles of operation, likely applicable to other sciences, and
it will leverage other sciences to teach us how cells work in an actionable way.

In this paper, we look at the organization of biological systems from an informa-
tion science point of view. The main reason is quite pragmatic: as we increasingly
map out and understand the complex interactions of biological components, how
can we write down such knowledge, in such a way that we can inspect it, animate
it, and understand its principles? For genes, we can write down long but struc-
turally simple strings of nucleotides in a 4-letter alphabet, that can be stored and
queried. For proteins we can write down strings of amino acids in a 20-letter al-
phabet, plus three-dimensional information, which can be stored a queried with a
little more difficulty. But how shall we write down biological processes, so that they
can be stored and queried? It turns out that biologists have already developed a
number of informal notation, which will be our starting points. These notations
are abstractions over chemistry or, more precisely, are abstractions over a number
of biologically relevant chemical toolkits.

2 Abstract Machines

An abstract machine is a fictional information-processing device that can, in prin-
ciple, have a number of different physical realizations (mechanical, electronic, bi-
ological, or even software). An abstract machine is characterized by:

• a collection of discrete states,
• a collection of operations (or events) that cause discrete transitions between

states.

The evolution of states through transitions can in general happen concurrently.
The adequacy of this generic model for describing complex systems is argued, e.g.,
in [22].

Different chemical toolkits studied in biochemistry, can be seen as a separate
abstract machines with appropriate sets of states and operations. The abstract
machines we consider here are each grounded in a different chemical toolkit (nu-
cleotides, amino acids, and phospholipids), and hence have some grounding in



Abstract Machines of Systems Biology 75

reality. Moreover, each abstract machine corresponds to a different kind of infor-
mal algorithmic notation that biologists have developed (Figure 1, dotted bubbles):
this is further evidence that abstract principles of organization are at work.

The Gene Machine (better known as Gene Regulatory Networks) performs
information processing tasks within the cell. It regulates all other activities, in-
cluding assembly and maintenance of the other machines, and the copying of it-
self. The Protein Machine (better known as Biochemical Networks) performs all
mechanical and metabolic tasks, and also some signal processing. The Membrane
Machine (better known as Transport Networks) separates different biochemical en-
vironments, and also operates dynamically to transport substances via complex,
discrete, multi-step processes.

These three machines operate in concert and are highly interdependent. Genes
instruct the production of proteins and membranes, and direct the embedding
of proteins within membranes. Some proteins act as messengers between genes,
and others perform various gating and signaling tasks when embedded in a mem-
brane. Membranes confine cellular materials and bear proteins on their surfaces.
In eukaryotes, membranes confine the genome, so that local conditions are suitable
for regulation, and confine other reactions carried out by proteins in specialized
vesicles.



76 L. Cardelli

Therefore, to understand the functioning of a cell, one must understand also
how the various machines interact. This involves considerable difficulties (e.g., in
simulations) because of the drastic difference in time and size scales: proteins in-
teracts in tiny fractions of a second, while gene interactions take minutes; proteins
are large molecules, but are dwarfed by chromosomes, and membranes are larger
still. Before looking at the interactions among the different machine in more detail,
we start by discussing each machine separately.

3 The Protein Machine (Biochemical Networks)

Proteins are long folded-up strings of amino acids with precisely determined, but
often mechanically flexible, three-dimensional shapes. If two proteins have surface
regions that are complementary (both in shape and in charge), they may stick
to each other like Velcro, forming a protein complex where a multitude of small
atomic forces crates a strong bond between individual proteins. They can similarly
stick highly selectively to other substances. During a complexation event, a pro-
tein may be bent or opened, thereby revealing new interaction surfaces. Through
complexation many proteins act as enzymes: they bring together compounds, in-
cluding other proteins, and greatly facilitate chemical reactions between them
without being themselves affected.

Proteins may also chemically modify each other by attaching or removing small
phosphate groups at specific sites. Each such site acts as a boolean switch: over a
dozen of them can be present on a single protein. Addition of a phosphate group
(phosphorilation) is performed by an enzyme that is then called a kinase. Re-
moval of a phosphate group (dephosphorilation) is performed by an enzyme
that is then called a phosphatase. For example, a protein phosphatase kinase
is a protein that phosphorilates a protein that phosphorilates a protein that de-
phosphorilates a protein. Each (de-)phosphorilation may reveal new interaction
surfaces, and each surface interaction may expose new phosphorilation sites.

It turns out that a large number of protein interactions work at the level of
abstraction just described. That is, we can largely ignore chemistry and the protein
folding process, and think of each protein as a collection of features (binding sites
and phosphorilation sites) whose availability is affected by (de-)complexation and
(de-)phosphorilation interactions.

Finding a suitable language in which to cast such an abstraction is a non-trivial
task. Kohn designed a graphical notation for networks of interacting proteins [28].
This was a tremendous achievement, summarizing hundreds of technical papers
in page-sized pictures, while providing a sophisticated and expressive notation
that could be translated back into chemical equations (according to semi-formal
guidelines). Because of this intended chemical semantics, the dynamics of a systems
is implied in Kohn’s notation, but only by translation to chemical (and hence
kinetic) equations. The notation itself has no dynamics, and this is one of its main
limitation. The other major limitation is that, although a graphical notation is



Abstract Machines of Systems Biology 77

very appealing, it tends to stop being useful when it overflows the borders of a
page or of a whiteboard (the original Kohn maps span several pages).

Other notations for the protein machine can be devised. Kitano, for example,
improves on the conciseness, expressiveness, and precision of Kohn’s notation [27];
further sophistication in graphical notation will certainly be required along the
general principles of [18]. A different approach is to devise a textual notation, which
inherently has no “page-size” limit and can better capture dynamics; examples are
Bio-calculus [37], and most notably κ-caculus [14], [15], whose dynamics is fully
formalized. But one may not need to invent completely new formalisms. Regev
and Shapiro, in pioneering work [47], [45], described how to represent chemical and
biochemical interactions within existing process calculi (π-calculus). Since process
calculi have a well understood dynamics (better understood, in fact, than most
textual notations that one may devise just for the purpose), that approach also
provides a solid basis for studying systems expressed in such a notation. Finally,
some notations incorporate both continuous and discrete aspects, as in Charon [3].

In summary, the fundamental flavor of the Protein Machine is: fast synchronous
binary interactions. Binary because interactions occur between two complemen-
tary surfaces, and because the likelihood of three-party instantaneous chemical
interactions can be ignored. Synchronous because both parties potentially feel the
effect of the interaction, when it happens. Fast because individual chemical reac-
tions happen at almost immeasurable speeds. The parameters affecting reaction
speed, in a well-stirred solution, are just a reaction-specific rate constant having to
do with surface affinity, plus the concentrations of the reagents (and the temper-
ature of the solution, which is usually assumed constant). Concentration affects
the likelihood of molecules randomly finding each other by Brownian motion. Note
that Brownian motion is surprisingly effective at a cellular scale: a molecule can
“scan” the equivalent volume of a bacteria for a match in 1/10 of a second, and
it will in fact scan such a bounded volume because random paths in 3D do not
return to the origin.

4 The Gene Machine (Gene Regulatory Networks)

The central dogma of molecular biology states that DNA is transcribed to RNA,
and RNA is translated to proteins (and then proteins do all the work). This dogma
no longer paints the full picture, which has become considerably more detailed in
recent years. Without entering into a very complex topic [32], let us just note that
some proteins go back and bind to DNA. Those proteins are called transcription
factors (either activators or repressors); they are produced for the purpose
of allowing one gene (or signaling pathway) to communicate with other genes.
Transcription factors are not simple messages: they are proteins, which means
they are subject to complexation, phosphorilation, and programmed degradation,
which all have a role in gene regulation.

A gene is a stretch of DNA consisting of two (not necessarily contiguous or
unbroken) regions: an input (regulatory) region, containing protein binding



78 L. Cardelli

sites (for transcription factors) and an output (coding) region, coding for one or
more proteins that the gene produces. Sometimes there are two coding regions, in
opposite directions [44], on count of DNA being a doubly-linked list. Sometimes
two genes overlap on the same stretch of DNA.

The output region functions according to the genetic code: a well understood
and almost universal table mapping triplets of nucleotides to one of about 20 amino
acids, plus start and stop triplets. The input region functions according to a much
more complex code that is still poorly understood: transcription factors, by their
specific 3D shapes, bind to specific nucleotide sequences in the input region, with
varying binding strength depending of the precision of the match.

Thus, the gene machine, although entirely determined by the digital infor-
mation coded in DNA, is not entirely digital in functioning: a digitally encoded
protein, translated and folded-up, uses its “analog” shape to recognize another
digital string and promote the next step of translation. Nonetheless, it is custom-
ary to ignore the details of this process, and simply measure the effectiveness with
which (the product of) a gene affects another gene. This point of view is reflected
in standard notation for gene regulatory networks (e.g., see [16]).

In Figure 2, a gene is seen as a hardware gate, and the genome can be seen
as a vast circuit composed of such gates. Once the performance characteristics of
each gate is understood, one can understand or design circuits by combining gates,
almost as one would design digital or analog hardware circuits. The performance
characteristics of each gene in a genome is probably pretty unique. Hence, as in
the protein machine, we are going to have thousands of “primitive instructions”:
one for each gene.

The state of a gene machine is the concentrations of the transcription factors
produced by each gene (or arriving from the environment). The operations, again,
are the input-output functions of each gene. But what is the “execution” of a
gene machine? It is not as simple as saying that one gene stimulates or inhibits
another gene by a certain factor. It is known that certain genes perform complex
computations on their inputs that are a mixture of boolean, analog, and multi-stage
operators [51]. Therefore, the input region of each gene can itself be a sophisticated
machine.



Abstract Machines of Systems Biology 79

Whether the execution of a gene machine should be seen as a continuous or
discrete process, both in time and in concentration levels, is already a major ques-
tion. Qualitative models (e.g.: asynchronous automata [49], network motifs [35])
can provide more insights that quantitative models, whose parameters are hard to
come by and are possibly not critical. On the other hand, it is understood that
pure boolean models are inadequate in virtually all real situations. Continuous,
stochastic, and decay aspect of transcription factor concentrations are all critical
in certain situations [33], [50].

Despite all these difficulties and uncertainties, a single notation for the gene
machine is in common use [16]. There, the gates are connected by either “excita-
tory” (pointed arrow) or “inhibitory” (blunt arrow) links. What that might mean
exactly is often left unspecified, except that, in a common model, a single constant
weight is attached to each link.

Any serious publication would actually start from a set of ordinary differential
equations relating concentrations of transcription factors, but this is only feasible
for small networks. The best way to formalize the notation of gene regulatory
networks is still subject to debate and many variations, but there is little doubt
that formalizing such a notation will be essential to get a grasp on gene machines
the size of genomes (the smallest of which, M.Genitalium, is on the order of 150
Kilobytes, and one closer to human cellular organization, Yeast, is 3 Megabytes).

In summary, the fundamental flavor of the Gene Machine is: slow asynchronous
stochastic broadcast. The interaction model is really quite strange, by computing
standards. Each gene has a fixed output, which is not quite an address for another
gene: it may bind to a large number of other genes, and to multiple locations on
each gene. The transcription factor is produced in great quantities, usually with
a well-specified time-to-live, and needs to reach a certain threshold to have an ef-
fect. On the other hand, various mechanisms can guarantee Boolean-like switching
when the threshold is crossed, or, very importantly, when a message is not received.
Activation of one gene by another gene is slow by any standard: typically one to
five minutes, to build up the necessary concentration1. However, the genome can
slowly direct the assembly-on-need of protein machines that then act fast: this
“swap time” is seen in experiments that switch available nutrients. The stochastic
aspect is fundamental because, e.g., with the same parameters, a circuit may oscil-
late under stochastic/discrete semantics, but not under deterministic/continuous
semantics [50]. One reason is that a stochastic system may decay to zero molecules
of a certain kind at a given time, and this can cause switching behavior, while a
continuous system may asymptotically decay only to a non-zero level.
1 Consider that bacteria replicate in only 20 minute while cyclically activating hundreds

of genes. It seems that, at least for bacteria, the gene machine can make “wide” but
not very “deep” computations, [35].



80 L. Cardelli

5 The Membrane Machine (Transport Networks)

A cellular membrane is an oriented closed surface that performs various molecular
functions. Membranes are not just containers: they are coordinators and sites of
major activity2. Large functional molecules (proteins) are embedded in membranes
with consistent orientation, and can act on both sides of the membrane simulta-
neously. Freely floating molecules interact with membrane proteins, and can be
sensed, manipulated, and pushed across by active molecular channels. Membranes
come in different kinds, distinguished mostly by the proteins embedded in them,
and typically consume energy to perform their functions. The consistent orienta-
tion of membrane proteins induces an orientation on the membrane.

One of the most remarkable properties of biological membranes is that they
form a two-dimensional fluid (a lipid bilayer) embedded in a three-dimensional
fluid (water). That is, both the structural components and the embedded proteins
freely diffuse on the two-dimensional plane of the membrane (unless they are held
together by specific mechanisms). Moreover, membranes float in water, which may
contain other molecules that freely diffuse in that three-dimensional fluid. Mem-
brane themselves are impermeable to most substances, such as water and protons,
so that they partition the three-dimensional fluid. This organization provides a
remarkable combination of freedom and structure.

2 “For a cell to function properly, each of its numerous proteins must be localized to the
correct cellular membrane or aqueous compartment.” [31], p.675.



Abstract Machines of Systems Biology 81

Many membranes are highly dynamic: they constantly shift, merge, break
apart, and are replenished. But the transformations that they support are natu-
rally limited, partially because membranes must preserve their proper orientation,
and partially because membrane transformations need to be locally–initiated and
continuous. For example, it is possible for a membrane to gradually buckle and
create a bubble that then detaches, or for such a bubble to merge back with a
membrane. But it is not possible for a bubble to “jump across” a membrane (only
small molecules can do that), of for a membrane to turn itself inside-out.

The basic operations on membranes, implemented by a variety of molecular
mechanisms, are local fusion (two patches merging) and local fission (one patch
splitting in two) [8]. We discuss first the 2D case (which is instructive, and for
which there are some formal notations) and then the 3D case (the real one, for
which there are no formal notations).

In two dimensions (Figure 3), at the local scale of membrane patches, fusion
and fission become indistinguishable as a single operation, switch, that takes two
membrane patches, i.e., to segments A-B and C-D, and switches their connecting
segments into A-C and B-D (crossing is not allowed). We may say that, in 2D,
a switch is a fusion when it decreases the number of whole membranes, and is a
fission when it increases such number.

When seen on the global scale of whole 2D membranes, switch induces four op-
erations: in addition to the obvious merging (Mate) and splitting (Mito) of mem-
branes, there are also operation, quite common in reality, that cause a membrane
to “eat” (Endo) or “spit” (Exo) another subsystem. There are common special
cases of Mito and Endo, when that subsystem consists of zero (Drip, Pino) or one
(Bud, Phago) membrane. All these operations ensure that what is or was outside
the cell never gets mixed with what is inside. The main reactions that violate this
invariant are destructive and non-local ones (such a digestion, not shown). Note
that Mito/Mate preserve the nesting depth of subsystems, and hence they cannot
encode Endo/Exo; instead, Endo/Exo can encode Mito/Mate [12].

In three dimensions, the situation is more complex (Figure 4). There are 2
distinct local operations on surface patches, inducing 8 distinct global operations
that change surface topology. Fusion joins two Positively curved patches (in the
shapes of domes) into one Negatively curved patch (in the shape of a hyperbolic
cooling tower) by allowing the P-patches to kiss and merge. Fission instead splits
one N-patch into two P-patches by pinching the N-patch. Fusion does not neces-
sarily decrease the number of membranes in 3D (it may turn a sphere into a torus
in two different ways: T-Endo T-Mito), and Fission does not necessarily increase
the number of membranes (it may turn a torus into a sphere in two different ways:
T-Exo, T-Mate). In addition, Fusion may merge two spheres into one sphere in
two different ways (S-Exo, S-Mate), and Fission may split one sphere into two
spheres in two different ways (S-Endo, S-Mito). Note that S-Endo and T-Endo
have a common 2D cross section (Endo), and similarly for the other three pairs.

Cellular structures have very interesting dynamic topologies: the eukaryotic nu-
clear membrane, for example, is two nested spheres connected by multiple toroidal



82 L. Cardelli

holes (and also connected externally to the Endoplasmic Reticulum). This whole
structure is disassembled, duplicated, and reassembled during cellular mitosis. De-
velopmental processes based on cellular differentiation are also within the realm
of the Membrane Machine, although geometry, in addition to topology, is an im-
portant factor there.

The informal notation used to describe executions of the Membrane Machine
does not really have a name, but it can be seen in countless illustrations (e.g., [31],
p.730). All the stages of a whole process can be seen in a single snapshot, with
arrows denoting operations (Endo/Exo etc.) that cause transitions between states.
This kind of depiction is natural because often all the stages of a process are seen
at once, in photographs, and much of the investigation has to do with determining
their proper sequence and underlying mechanisms.

Some membrane-driven processes are semi-regular, and tend to return to some-
thing resembling a previous configuration, but they are also stochastic, so no static
picture or finite-state-automata notation can tell the real story. Spectacular mem-
brane dynamics can be found in the protein secretion pathway, through the Golgi
system, and in many developmental processes. Here too there is a need for a pre-
cise dynamic notation that goes beyond static pictures; there are only a few of
those, currently [41], [46], [12].

In summary, the fundamental flavor of the Membrane Machine is: fluid-in-fluid
architecture, membranes with embedded active elements, and fusion and fission
of compartments. Although dynamic compartments are common in computing,
operations such as endocytosis and exocytosis have never explicitly been suggested
as fundamental. They embody important invariants that help segregate cellular



Abstract Machines of Systems Biology 83

materials from environmental materials. The distinction between active elements
embedded on the surface of a compartment, vs. active elements contained in the
compartment, becomes crucial with operations such as Exo. In the former case,
the active elements are retained, while in the latter case they are lost to the
environment.

6 Three Machines, One System

Three classes of chemicals, among others, are fundamental to cellular function-
ing: nucleotides (nucleic acids), amino acids (proteins), and phospholipids (mem-
branes). Each of our abstract machines is based primarily on one of these classes of
chemicals: amino acids for the protein machine, nucleotides for the gene machine,
and phospholipids for the membrane machine.

These three classes of chemicals are however heavily interlinked and interde-
pendent. Some enzyme are actually made of nucleotides (RNA) instead of amino
acids, or by a combination of both. The gene machine “executes” DNA to pro-
duce proteins (through RNA intermediaries), but some of those proteins (and
some RNA), which have their own dynamics, are then used as control elements of
DNA transcription. Membranes are fundamentally sheets of pure phospholipids,
but in living cells they are heavily doped with embedded proteins which modu-
late membrane shape and function. Some RNA translation happens only through
membranes, with the RNA input on one side, and the protein output on the other
side or threaded into the membrane.

Therefore, the abstract machines are interlinked as well, as illustrated in Figure
1. Ultimately, we will need a single notation in which to describe all three machines
(and more), so that a whole organism can be described.

What could a single notation for all three machines (and more) look like? All
formal notations known to computing, from Petri Nets to term-rewriting systems,
have already been used to represent aspects of biological systems; we shall not
even attempt a review here. But none, we claim, has shown the breadth of ap-
plicability and scalability of process calculi [34], partially because they are not
a single notation, but a coherent conceptual framework in which one can derive
suitable notations. There is also a general theory and notation for such calculi [36]
which can be seen as the formal umbrella under which to unify different abstract
machines.

Major progress in using process calculi for describinh biological systems was
achieved in [45], where it is argued that one of the standard existing process calculi,
π-calulus, enriched with a stochastic semantics [24], [42], [43], is extraordinarily
suitable for describing both molecular-level interactions and higher levels of or-
ganization. The same stochastic calculus is now being used to describe genetic
networks [29]. For membrane interactions, though, we need something beyond or-
dinary process calculi, which have no notion of compartments. Already [45], [46]
adapted Ambient Calculus [13] (which extends π-calculus) to represent biologi-



84 L. Cardelli

cal compartments and complexes. A more recent attempt, Brane Calculus [12],
embeds the biological invariants and 2D operations from Section 5.

These experiences point at process calculi as, at least, one of the most promising
notational frameworks for unifying different aspects of biological representation.
In addition, the process calculus framework is generally suitable for relating dif-
ferent levels of abstractions, which is going to be essential for feasibly representing
biological systems of high architectural complexity.

In summary, the fundamental flavor of cellular machinery is: chemistry in the
service of materials, energy, and information processing. The processing of energy
and materials (e.g., in metabolic pathways) need not be emphasized here, rather
we emphasize the processing of information, which is equally vital for survival and
evolution [1]. Information processing tasks are distributed through a number of
interacting abstract machines with wildly different architectures and principles of
operation.

7 Conclusions

Many aspects of biological organization are more akin to discrete hardware and
software systems than to continuous systems, both in hierarchical complexity and
in algorithmic-like information-driven behavior. These aspects need to be reflected
in the modeling approaches and in the notations used to describe such systems, in
order to make sense of the rapidly accumulating experimental data.

References

1. C. Adami: What is complexity? BioEssays, 24 (2002), 1085-1094.
2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology

of the Cell. 4th edition, Garland Science, New York, 2002.
3. R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, J. Schug:

Hybrid modeling of biomolecular networks. In Proceedings of the 4th International
Workshop on Hybrid Systems: Computation and Control, Rome, Italy, March 28-30,
2001, LNCS 2034.

4. M. Antoniotti, B. Mishra, F. Park, A. Policriti, N. Ugel: Foundations of a query
and simulation system for the modeling of biochemical and biological processes. In
The Pacific Symposium on Biocomputing (L. Hunter, T.A. Jung, R.B. Altman, A.K.
Dunker, T.E. Klein, eds.), World Scientific, 2003, 116–127.

5. M. Antoniotti, C. Piazza, A. Policriti, M. Simeoni, B. Mishra: Modeling cellular
behavior with hybrid automata: bisimulation and collapsing. In Int. Workshop on
Computational Methods in Systems Biology, LNCS, Springer-Verlag, Berlin, 2003, to
appear.

6. M. Antoniotti, A. Policriti, N. Ugel, B. Mishra: Model building and model checking
for biochemical processes. In Cell Biochemistry and Biophysics, 2003, in press.

7. C. Bodei, P. Degano, F. Nielson, H.R. Nielson: Control flow analysis for the pi-
calculus. In Proc. 9th International Conference on Concurrency Theory, LNCS 1466,
Springer-Verlag, Berlin, 1998, 84–98.



Abstract Machines of Systems Biology 85

8. K.N.J. Burger: Greasing membrane fusion and fission machineries. Traffic, 1 (2000),
605–613.

9. G. Ciobanu, V. Ciubotaru, B. Tanasă: A π-calculus model of the Na pump. Genome
Informatics, 13 (2002), 469–471.

10. G. Ciobanu: Software verification of biomolecular systems. In Modelling in Molecu-
lar Biology (G. Ciobanu, G. Rozenberg, eds.), Natural Computing Series, Springer-
Verlag, Berlin, 2004, 40–59.

11. M. Curti, P. Degano, C. Priami, C.T. Baldari: Modelling biochemical pathways
through enhanced pi-calculus. Theoretical Computer Science, 325, 1 (2003), 111–140.

12. L. Cardelli: Brane calculi - Interactions of biological membranes. In Proc. Computa-
tional Methods in Systems Biology, 2004, Springer-Verlag, Berlin, to appear.

13. L. Cardelli, A.D. Gordon: Mobile ambients. Theoretical Computer Science, Special
Issue on Coordination (D. Le Métayer, ed.), 240, 1 (2000), 177–213.

14. V. Danos, M. Chiaverini: A core modeling language for the working molecular biol-
ogist. 2002.

15. V. Danos, C. Laneve: Formal molecular biology. Theoretical Computer Science, to
appear.

16. E.H. Davidson, D.R. McClay, L. Hood: Regulatory gene networks and the properties
of the developmental process. PNAS, 100, 4 (2003), 1475-1480.

17. A. Di Pierro, H. Wiklicky: Probabilistic abstract interpretation and statistical test-
ing. In Proc. Second Joint International Workshop on Process Algebra and Probabilis-
tic Methods, Performance Modeling and Verification, LNCS 2399, Springer-Verlag,
Berlin, 2002, 211–212.

18. S. Efroni, D. Harel, I.R. Cohen: Reactive animation: realistic modeling of complex
dynamic systems. IEEE Computer, to appear, 2005.

19. M.B. Elowitz, S. Leibler: A synthetic oscillatory network of transcriptional regulators.
Nature, 403 (2000), 335–338.

20. F. Fages, S. Soliman, N. Chabrier-Rivier: Modelling and querying interaction net-
works in the biochemical abstract machine BIOCHAM. J. Biological Physics and
Chemistry, 4, 2 (2004), 64–73.

21. D.T. Gillespie: Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry, 81 (1997), 2340-2361.

22. D. Harel: Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8 (1987), 231–274.

23. L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray: From molecular to modular
cell biology. Nature, 402 (Dec. 1999), C47–52.

24. J. Hillston: A Compositional Approach to Performance Modelling. Cambridge Uni-
versity Press, 1996.

25. C-Y.F. Huang, J.E. Ferrell Jr.: Ultrasensitivity in the mitogen-activated protein ki-
nase cascade. PNAS, 93 (1996), 10078-10083.

26. H. Kitano: The standard graphical notation for biological networks. The Sixth Work-
shop on Software Platforms for Systems Biology, 2002.

27. H. Kitano: A graphical notation for biochemical networks. BIOSILICO, 1 (2003),
169–176.

28. K.W. Kohn: Molecular interaction map of the mammalian cell cycle control and DNA
repair systems. Molecular Biology of the Cell, 10, 8 (1999), 2703–2734.

29. C. Kuttler, J. Niehren, R. Blossey: Gene regulation in the pi calculus: simulating
cooperativity at the Lambda switch. BioConcur 2004, ENTCS.



86 L. Cardelli

30. M. Kwiatkowska, G. Norman, D. Parker: Probabilistic symbolic model checking with
PRISM: a hybrid approach. J. Software Tools for Technology Transfer, 6, 2 (2004),
128–142.

31. H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell: Molecular
Cell Biology. Fourth Edition, Freeman, 2002.

32. J.S. Mattick: The hidden genetic program of complex organisms. Scientific American,
October 2004, 31–37.

33. H.H. McAdams, A. Arkin: It’s a noisy business! Genetic regulation at the nanomolar
scale. Trends Genet., 15, 2 (1999), 65–69.

34. R. Milner: Communicating and Mobile Systems: The π-calculus. Cambridge Univer-
sity Press, 1999.

35. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon: Network
motifs: simple building blocks of complex networks. Science, 298 (2002), 824–827.

36. R. Milner: Bigraphical reactive systems. CONCUR 2001, Proc. 12th International
Conference in Concurrency Theory, LNCS 2154, Springer-Verlag, Berlin, 2001, 16–
35.

37. M. Nagasaki, S. Onami, S. Miyano, H. Kitano: Bio-calculus: its concept and molecular
interaction. Genome Informatics, 10 (1999), 133–143.

38. F. Nielson, R.R. Hansen, H.R. Nielson: Abstract interpretation of mobile ambients.
Science of Computer Programming, 47, 2-3 (2003), 145–175.

39. F. Nielson, H.R. Nielson, C. Priami, D. Rosa: Static analysis for systems biology. In
Proc. ACM Winter International Symposium on Information and Communication
Technologies, Cancun 2004.

40. F. Nielson, H.R. Nielson, C. Priami, D. Rosa: Control flow analysis for BioAmbients.
Proc. BioCONCUR 2003, to appear.

41. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
42. C. Priami: The stochastic pi-calculus. The Computer Journal, 38 (1995), 578–589.
43. C. Priami, A. Regev, E. Shapiro, W. Silverman: Application of a stochastic name-

passing calculus to representation and simulation of molecular processes. Information
Processing Letters, 80 (2001), 25–31001.

44. M. Ptashne: Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Labora-
tory Press, 3rd edition, 2004.

45. A. Regev: Computational Systems Biology: A Calculus for Biomolecular Knowledge.
Ph.D. Thesis, Tel Aviv University, 2002.

46. A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E. Shapiro: BioAmbients: an
abstraction for biological compartments. Theoretical Computer Science, to appear.

47. A. Regev, E. Shapiro: Cells as computation. Nature, 419 (2002), 343.
48. Systems biology markup language: http://www.sbml.org
49. D. Thieffry, R. Thomas: Qualitative analysis of gene networks. Pacific Symposium

of Biocomputing 1998, 77–88.
50. J.M. Vilar, H.Y. Kueh, N. Barkai, S. Leibler: Mechanisms of noise-resistence in ge-

netic oscillators. PNAS, 99, 9 (2002), 5988–5992.
51. C.-H. Yuh, H. Bolouri, E.H. Davidson: Genomic cis-regulatory logic: experimental

and computational analysis of a sea urchin gene. Science, 279 (1998), 1896–1902.


