
Specifying Dynamic Software Architectures by
Using Membrane Systems

Matteo Cavaliere1, Vincenzo Deufemia2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: martew@inwind.it

2 Dipartimento di Matematica e Informatica
Università di Salerno
Fisciano(SA), Italy
E-mail: deufemia@unisa.it

Summary. We present a formalism for the definition of dynamic software architec-
tures in terms of membrane systems, distributed computational models inspired from
the structure and the functioning of living cells. The dynamics (the evolution) of the
overall architecture is defined by rules that modify the contents (data) and structure of
the membrane system. The evolution of the membrane system can be statically checked
to ensure that some properties imposed by the architecture are preserved.

1 Introduction

A software architecture provides a high-level system description in terms of a
collection of computational components and connectors. Components typically
encapsulate information or functionality while connectors coordinate the commu-
nication between components. In particular, software architectures describe the
decomposition of a system into components, the interconnection of the compo-
nents, and component interaction [18] allowing developers to abstract away the
details of the individual components of an application. Dynamic software archi-
tectures are those that change their structure and enact the modifications during
the system’s execution [10].

In the last years several architecture description languages (ADL) have been
proposed to provide behavioral descriptions of the components and connectors
[10]. However, to support the development of robust and correct architectures a
variety of formal approaches have been introduces (see [11, 3, 6] among others).
The importance of having a formal basis for the design of system architectures is
underlined in the survey [1].

88 M. Cavaliere, V. Deufemia

Besides the possibility of analyzing software architecture properties rigorously
(like for instance, deadlock freeness), the formalisms for specifying software archi-
tectures are particularly useful for the description of dynamic software systems
since their development is “challenging in terms of correctness, robustness, and
efficiency” [19]. Indeed, the possibility of instantiating and removing components
at run-time makes dynamic software architectures hard to model and analyze since
they may have infinite different configurations.

Here, we propose to formally define (dynamic) software architectures in terms
of membrane systems, that are parallel and distributed computational devices
inspired by the structure and by the working of living cells. For an introduction to
this topic, the reader can consult [14] or the guide [15]. The updated literature on
this field can be found in the web page [21]. Some similarities with our approach can
be found with the approach proposed in [8] where a language based on chemical
reactions have been used to formally describe a software system. On the other
hand in the approach presented here we introduce many operations typical of the
functioning of living cells, that, up to our knowledge, have not been used so far in
software system modelling.

The underlying idea of our approach is to represent a certain software archi-
tecture by means of a membrane system. Each region of the membrane system
represents an abstract component of the software system, with a certain type (in-
dicated by a label taken in a certain alphabet) that defines certain associated rules
(operations), used to evolve and to move objects (data). Objects can also have dif-
ferent types (indicated by different symbols of an alphabet) and each occurrence
of an object can be involved in certain rules, depending on its type. The objects
have also associated information about the membranes they cross during their
movements. All the objects (data) are processed and moved in a parallel way.

In this way, the evolution of a membrane system can describe the evolution
of a software architecture. Therefore by investigating the representing membrane
system, it is possible to formally verify the properties of the modelled software
architecture.

2 Preliminaries: Membrane Systems

Membrane systems (also referred to as P systems) are a class of parallel and
distributed computing devices inspired from the structure and the functioning of
living cells.

The basic model considers a membrane structure, consisting of several cell-like
membranes which are hierarchically embedded in a main membrane, called the
skin membrane. The membrane delimits regions, where are placed occurrences of
objects representing chemicals.

The occurrences of the objects evolve according to given evolution rules, rep-
resenting the chemical reactions, that are associated to the regions; here we also
associate labels to the membranes and we consider rules that can change the mem-
brane structure (in other words, the membranes are considered as active elements).

Specifying Dynamic Software Architectures by Using Membrane Systems 89

It is also possible to associate rules to the membranes that move the objects
from a region to another one (symport/antiport rules).

As a general idea, a single step of the evolution of a P system is done by
applying, in a non-deterministic maximally parallel manner, the rules associated
to the regions and to the membranes of the system.

The evolution of the P system halts when no further rule can be applied to
the occurrences of objects and to membranes. A more formal definition of the
evolution will be specified later when a specific model of membrane computing
will be introduced.

The membrane system model used in this paper is a compound of many (gen-
eralized) features taken from the membrane systems area. To give a reference to
the current literature, the model used here is a kind of evolution-communication
model (where evolution rules, together with symport/antiport rules are present)
extended with rules of membrane systems using active membranes.

The evolution-communication model has been originally introduced in [4], while
membrane systems using active membranes have been investigated in several pa-
pers (for instance, [12, 13]). In this paper, we are mainly interested in the dynam-
ics of a membrane system, not in its computational power, and then, we will not
specify the output region of the system, contrarily to what is usually done in the
membrane computing area.

In this paper we introduce a feature that is not present in any of the membrane
models considered up to this moment and that seems necessary for software system
modelling, i.e. the association of a unique identifier to each membrane. Notice that
such an identifier differs from the label of the membrane that indicates the type
of the membrane; while several membranes can have the same label (i.e., can
have the same type), the identifier of a membrane is unique (i.e., can be imagined
as an integer number) and different membranes (even with the same label) have
different identifiers; the identifier is associated to a membrane when the membrane
is created. Because our goal is to model software systems, we can suppose to take a
set of identifiers (ID), large “enough”, to be “compatible” with the physical limits
(for instance, memory limits) of the software system we plan to model.

In the membrane model defined here, also the occurrences of objects make
use of the mentioned identifiers. In fact, each object present in the regions of the
membrane system is associated with a string (possibly empty) composed of some
of the identifiers of the membranes present in the current configuration.

This string is used to keep trace, during the evolution of the system, of the
membranes visited by the object occurrence. The rules that move and manipulate
the objects can also update the string of identifiers associated to such objects, in
a specified way. Some of the rules may be active only when a specified boolean
predicate defined over the identifiers is true.

To make more readable the formal definition given later, we introduce some
basic operations involving identifiers and strings of identifiers. The hierarchical
structure of a P system can be represented by a string of correctly matching
parentheses; there is an unique external pair of parentheses representing the skin

90 M. Cavaliere, V. Deufemia

membrane. We can represent a configuration of a P system adding to such string
of parentheses the contents of the regions in form of strings representing multisets.

Given a string µ representing a configuration of a P system, then µ(i) denotes
the ith membrane of µ (i.e., the ith open parenthesis [), reading µ as a string, from
left to right; µ(i).id denotes the identifier associated to the ith membrane present
in µ. As already mentioned, each membrane of a system has associated a unique
identifier. For instance, given µ = [h1ab[h2c[h1a]h1b]h2]h1 , then µ(3).id denotes the
identifier associated to the innermost membrane (as mentioned above, to each
object occurrence is associated a string of identifiers and such string may even be
empty); given a multiset of objects, described by a string m, m(i) denotes the i
object occurrence present in the multiset, reading the string m like a string, from
left to right; m(i).list denotes the string of identifiers associated to the ith object
occurrence present in the multiset m. For instance, given the multiset m = aabcc,
then m(4).list denotes the string of identifiers associated to the first occurrence of
c, reading the string m from left to right.

Given a string of identifiers list, we denote by list− the new string of identifiers
obtained by removing the rightmost symbol from the string list; the addition of a
symbol to a string of identifiers is done by using the standard string concatenation,
indicated here by + to avoid confusions. Given a string of identifiers list, then
last(list) denotes the rightmost symbol (then the rightmost identifier) of the string.

As the reader can see, the string of identifiers is actually used like a stack,
and this is enough for our goal, due to the hierarchical structure of a membrane
system. The other operations involving a string of identifiers will be not formally
defined, since their meaning is rather intuitive. Moreover boolean predicates over
the set of identifiers will also be used.

The definition of the model used here as follows.

Definition 1. An evolution-communication P system with active membranes (in
short, an ECam P system), of degree m ≥ 1, is defined as

Π = (O,H, ID, µ,w1, w2, . . . , wm, R),

where:

• O is the alphabet of Π; its elements are called objects; to each occurrence of
an object present in the system is associated a string (possibly empty) over the
alphabet ID;

• H is a finite set of labels for membranes;
• ID is the set of identifiers; at any time, each membrane of the system has

associated, in a unique way, one of the identifiers present in ID; as a general
assumption we suppose that the set ID is finite but large enough to identify, at
any time, all the membranes present in the system;

• µ is a membrane structure consisting of m membranes labelled with elements
in H, not necessarily in a one-to-one manner;

Specifying Dynamic Software Architectures by Using Membrane Systems 91

• wi, 1 ≤ i ≤ m, specifies the multiset of objects present in the corresponding
region i when the system is created; to each occurrence of an object is associ-
ated an empty string of identifiers; if an object has an unbounded number of
occurrences, then we indicate it by using the index ∞;

• R is a set of developmental rules, of the following forms:
(a) : [hu → v]h or [h1 [h2u → v]h2]h1 , for h, h1, h2 ∈ H,u ∈ O+, v ∈ O+, with
|u| ≥ |v|;
object evolution rules, associated with membranes and depending on the label
of the membrane (or on the labels of the membranes in the second case) but not
involving the membranes, in the sense that the membranes are neither taking
part in the application of these rules nor modified by them; the objects present
in the multiset u are rewritten into the objects described by the multiset v;
each object occurrence in v is associated with a string of identifiers chosen as
one of the strings of identifiers associated to the object occurrences present in
u; formally, if |u| = m, and |v| = n, then we set v(j).list = u(i).list, for
1 ≤ i ≤ m, 1 ≤ j ≤ n;
(b) : (µ1 = [h1u[h2v]h2]h1 → µ2 = [h1v

′[h2u
′]h2]h1 , c) h1, h2 ∈ H,u ∈ O+, v ∈

O+;
antiport rules, that realize a synchronized exchange of objects; they are asso-
ciated with membranes and depend on the labels of the membranes but do not
change the membranes; the objects in u′ and v′ are exactly the objects in u and
v, respectively (the objects are only moved), except for the associate strings of
identifiers, updated in the following manner.
Suppose |v′| = |v| = n; then for 1 ≤ i ≤ n, we set

v′(i).list =
{

v(i).list− if last(v(i).list) = µ1(1).id,
v(i).list + µ1(2).id if last(v(i).list) 6= µ1(1).id.

The identifiers associated to the objects in u′ are updated in a symmetric way.
Suppose |u′| = |u| = m, then, for 1 ≤ i ≤ n, we set

u′(i).list =
{

u(i).list− if last(u(i).list) = µ1(2).id,
u(i).list + µ1(1).id if last(u(i).list) 6= µ1(2).id.

The idea that leads the update of the strings of identifiers is the following one. If
an object enters exactly the membrane whose identifier is the last one inserted
in the associated string of identifiers then the last identifier is removed (because
the object is coming back in “its” region); if this is not the case, then the
identifier of the membrane that the object is leaving, is added to the string of
identifiers; c is a boolean predicate over the set of identifiers; if it is specified,
then the rule is active, if and only if, the boolean predicate is true;
(c) : (µ1 = [h1 [h2u]h2]h1 → µ2 = [h1 [h2]h2u

′]h1 , c)
(µ1 = [h1u[h2]h2]h1 → µ2 = [h1 [h2u

′]h2]h1 , c), for h1, h2 ∈ H, u ∈ O+;
symport rules, that move objects from inside to outside a membrane, or vicev-
ersa; they are associated to the membranes and depend on the labels but do not
involve any change on the membranes; the objects in u′ are exactly the same

92 M. Cavaliere, V. Deufemia

in u (the objects are only moved), except their associated strings of identifiers
updated in the following way.
Suppose |u′| = |u| = n; then, for any 1 ≤ i ≤ n, we set, in the first case,

u′(i).list =
{

u(i).list− if last(u(i).list) = µ1(1).id,
u(i).list + µ1(2).id if last(u(i).list) 6= µ1(1).id.

In the second case,

u′(i).list =
{

u(i).list− if last(u(i).list) = µ1(2).id,
u(i).list + µ1(1).id if last(u(i).list) 6= µ1(2).id.

The string of identifiers associated to the objects in u′ are updated like in the
case of antiport rules described above; if the boolean predicate c is specified,
then the rule is active, if and only if, the specified predicate is true;
(d) : [iu]i → [iv[hw]h]i, h, i ∈ H, w, u, v ∈ O+, |u| ≥ |v|+ |w|;
creation rules; in reaction with some specified objects present in membrane i,
a new membrane with label h is created inside the one with membrane i, and
having inside the objects specified by w; the strings of identifiers, associated
to the objects in w are the empty strings; to the new created membrane is
associated a certain identifier from the set ID, not assigned to any membrane
currently present in the membrane system; the objects present in u are possibly
changed and the strings of identifiers for the objects in v are fixed like in the
case of the object evolution rule u → v;
(e) : [h1u]h1 [h2u

′]h2 → [h2 [h1v]h1v
′]h2 , |u|+ |u′| ≥ |v|+ |v′|;

endocytosis; an elementary membrane labelled h1 enters the adjacent mem-
brane labelled h2 that can be non-elementary, under the control of the objects in
u, u′ and labels h1, h2; the labels of the two membranes remain unchanged; the
objects in u and u′ are possibly changed; the strings of identifiers of the objects
in v and v′ are fixed like in the case of the objects evolution rules, u → v and
u′ → v′, respectively; all the remaining objects present in membrane h1 and h2

as well their strings of identifiers are left unchanged in the same membrane;
(f) : [h2 [h1u]h1u

′]h2 → [h1v]h1 [h2v
′]h2 , |u|+ |u′| ≥ |v|+ |v′|;

exocytosis; an elementary membrane labelled h1 is sent out of a membrane
labelled h2, under the control of the objects in u and u′ and the labels h1, h2;
the labels of the two membranes remain unchanged; the objects in u and u′ are
possibly changed; the strings of identifiers of the objects in v and v′ are fixed
like in the case of objects evolution rules, u → v and u′ → v′, respectively; all
the remaining objects present in membrane h1 and h2 as well their strings of
identifiers are left unchanged in the same membrane.

The evolution of the membrane system is defined in the following way. It
starts from an initial configuration represented by the initial membrane structure
µ and the multiset of objects available in its compartments at the beginning, hence
(µ,w1, w2, · · · , wm). Some of the objects, in some of the regions, can be present in

Specifying Dynamic Software Architectures by Using Membrane Systems 93

an unbounded number of occurrences. As mentioned, to each membrane is associ-
ated a unique identifier taken from the set of identifiers; such set is finite but we
suppose is big enough to contain an unique identifier for each membrane present
in the configuration of the system, during any possible computation; this assump-
tion is justified by the fact that the number of membranes that can be created is
bounded by the physical resources of the software system we are modelling.

To each object present in the regions of the membrane system is associated a
string of identifiers (initially empty) updated during the evolution of the system
in the way specified by the rules.

A single step of the evolution of the membrane system is composed by two
sub-steps, applied one after the other one. In the first sub-step, the rules of type
(a), (b), (c) are used in a non-deterministic maximally parallel manner.

The non-deterministic maximally parallel manner means that we assign the
object occurrences to the rules, non-deterministically choosing the rules and the
objects, until no further assignments is possible.

These rules realize the evolution of the objects by using the objects evolution
rules and the movement of the objects by using the symport/antiport rules.

Each object occurrence can be used by only one of these rules. The strings of
identifiers associated to the objects involved are updated as specified by the rules.
The symport/antiport rules are active only for the membranes where the boolean
predicate, if any, specified by c, is true.

In the second sub-step, the rules of type (d) - (f), are used, still in a maximally
parallel non-deterministic way. These rules modify the membrane structure of the
membrane system. Each object occurrence and each membrane can be involved in
only one of these rules.

Also in this case, the strings of identifiers associated to the involved objects
are updated in the way specified by the rules.

Notice that never during the entire evolution new object occurrences are cre-
ated; they are only transformed.

The evolution of the membrane system halts when the system reaches a halting
configuration, that is a configuration where no rules can be further applied. On the
other hand, there might be membrane systems whose evolution can run forever.

3 Membrane Systems as Dynamic Software Architectures
Specifications

In this section, first we show how membrane systems can be used to formally spec-
ify static architectures: the number and type of components and connections do
not change. Successively, we address the problem of capturing dynamic architec-
tures: systems for which composition of interacting components changes during
the course of a single evolution.

A software architecture specification describes the high-level design of a system
in terms of the structure of the components and their communication relationships.

94 M. Cavaliere, V. Deufemia

Thus, the specification focuses on the interaction behaviors exhibited by the com-
ponents, not on the algorithms used internally by the components to carry out
their functional roles.

The idea of the proposed approach is to describe the components (or enti-
ties) of the system, which can be classes, procedures, processes, etc., with the
membranes of the membrane system, which evolve and communicate according to
the rules associated to them. In particular, the membrane systems description of
a static software architecture consists of the mentioned hierarchical structure of
membranes where:

1. the associated multisets of objects (abstract data) and the associated set of
evolution rules (abstract manipulation of data) represent the static compo-
nents of the architecture,

2. the associated sets of symport/antiport rules represent the connectors of the
architecture.

For instance, consider the simple client-server system shown in Fig. 1(a). It
consists of one client and one server interacting via a link. This system is described
by the membrane system graphically depicted in Fig. 1(b). In particular, to each
entity of the system corresponds a membrane, and the communication between
these membranes is accomplished by antiport rules of the type [server r2 [client r1

]client]server → [server r1 [client r2]client]server (shown in Fig. 1(b) with an arrow),
which describe the request r1 sent by the client to the server, and the response
r2 sent by the server to the client. The client membrane has also associated a
multiset of objects representing its internal state, and a set of evolution rules that
evolve the objects according to the requests made to the server and the responses
received. As an example, when the previous antiport rule is applied, the object
r2 will activate some rules in the client membrane that evolve its internal state.
Moreover, some of the evolution rules can be executed only if the client membrane
is inside the server one, that is the rules are of the form [server [client a → b]client

]server.

Client Server

client

server

(a) (b)

Fig. 1. A simple client-server system (a) and the membrane system modelling it (b).

Now, let us consider a client-server system that changes the configuration dur-
ing the evolution. As an example, suppose that the system has two servers: a

Specifying Dynamic Software Architectures by Using Membrane Systems 95

primary server that provides many services, but it may go down suddenly, and a
secondary server that provides less services, but it is reliable. Thus, a client in-
teracts with a primary server and if, and only if, the primary server fails then it
would start to interact with the secondary one, as shown in Fig. 2(a) and 2(b).

Client

Primary

Client

SecondarySecondary

Primary

(a) (b)

Fig. 2. A dynamic client-server system.

These dynamic aspects are supported by the membrane systems through the
active membrane rules, which represent reconfiguration of the membrane struc-
ture. The behavior of the previous client-server system can be described by the
membrane system graphically depicted in Fig. 3. Here new membranes represent-
ing the clients can be created in the environment by using creation rules, and can
enter into the primary server membrane by using the endocytosis rule [client]client

[primaryu]primary → [primaryu[client]client]primary if and only if the state of the pri-
mary server is up (i.e., it contains the object u) as in Fig. 3(a). In the case the pri-
mary server goes down, its state changes from u to d and the secondary server is ac-
tivated by setting its state to up. Moreover, the client membrane leaves the primary
server by using the exocytosis rule [primary d [client]client]primary→ [client]client

[primary d]primary, and enters into the secondary server by executing the endocy-
tosis rule [client]client [secondary u]secondary → [secondary u [client]client]secondary,
as shown in Fig. 3(b).

The exclusive access to the two servers for the clients is guaranteed by the
following endocytosis and exocytosis rules:

[primary u]primary [secondary u]secondary →
[primary [secondary d]secondary u]primary

[primary [secondary d]secondary u]primary →
[primary u]primary [secondary d]secondary

[primary [secondary d]secondary d]primary →
[primary d]primary [secondary u]secondary

[primary d]primary [secondary d]secondary →
[primary [secondary u]secondary d]primary

[primary [secondary u]secondary d]primary →
[primary d]primary [secondary u]secondary

[primary [secondary u]secondary u]primary →
[primary u]primary [secondary d]secondary

96 M. Cavaliere, V. Deufemia

client

primary

(a)

secondary

u

d

client

secondary

(b)

primary

u

d

Fig. 3. The possible configurations of a dynamic client-server system.

An important information embedded into the rules of the membrane system is
the style of the specified architecture, that is the possible interconnections between
its individual components at run time. In fact, two membranes can be considered
interconnected when the symport/antiport rules can be applied on them, this
means that one of the two membranes is inside the other. These hierarchies are
created by applying the creation and endocytosis rules present in the membrane
system. Whereas, the dissolving and exocytosis rules disconnect the components
of the architecture at run time.

4 Describing the Architecture of a System for Monitoring a
Hospital Ward

In this section we show an example of membrane system for modelling the archi-
tecture of a software system monitoring a hospital ward. In this simple example
we consider an architecture formed by the low-level components of the software
system such as doctor, nurse, and patient. The dynamic behavior of the system is
the following. When a patient is registered into the monitoring system its state of
health is checked by the doctor and then it is assigned to a nurse. Each nurse can
have in charge a fixed number of patients. Periodically the doctor checks the health
of the patients and give them a dose of medicine. When a patient is restored, s/he
leaves the nurse and its health state is periodically checked by the doctor.

The following ECam P system represents a specification of the architecture for
the monitoring system:

Π = (O, H, ID, µ, wextenv, wdoctor, R),

where:

O = {p, n, q, t} ∪ {sd | d ∈ {1, . . . , m}} ∪ {xb, x
′
b, x

′′
b | b ∈ {1, . . . , l}}

∪ {ma | a ∈ {1, . . . , k}};
H = {extenv, doctor, nurse, patient};
µ = [extenv [doctor]doctor]extenv;

Specifying Dynamic Software Architectures by Using Membrane Systems 97

wextenv = p∞n∞;
wdoctor = λ;

R = {[extenv p → p]extenv,

[extenv n → n]extenv,

[extenv pp]extenv → [extenv[patient sdsd]patient]extenv,

[extenv nnnnn]extenv → [extenv[nurse ttttt]nurse]extenv,

[patient sdsd]patient[doctor]doctor → [doctor[patient xbxb]patient]doctor,

[doctor[patient xb]patient]doctor → [patient xb]patient[doctor]doctor,

[extenv[patient xb → xb]patient]extenv,

[extenv[nurse ttttt]nurse]extenv → [nurse ttttt]nurse[extenv]extenv,

[nurse [patient x′b]patient]nurse → [nurse x′b[patient]patient]nurse,

[extenv x′b[doctor]doctor]extenv → [extenv [doctor x′b]doctor]extenv,

[extenv [doctor ma]doctor]extenv → [extenv ma[doctor]doctor]extenv,

(µ1 = [extenv ma[nurse]nurse]extenv → µ2 = [extenv [nurse ma]nurse]extenv,

last(ma.list) = µ1(2).id),
(µ1 = [nurse ma[patient]patient]nurse → µ2 = [nurse [patient ma]patient]nurse,

last(ma.list) = µ1(2).id),
| d ∈ {1, . . . , m}, a ∈ {1, . . . , k}, b, c ∈ {1, . . . , l},
xb is the health state associated to symptom sd}
∪Rt ∪Rd ∪Rp;

Rt = {[patient xb]patient[nurse t]nurse → [nurse[patient xb]patient]nurse

| b ∈ {1, . . . , l}, xb indicates an ill health state}
∪{[patient xbxb]patient[doctor]doctor → [doctor[patient xcxc]patient]doctor

| b, c ∈ {1, . . . , l}, xb indicates a restored health state};
Rd = {[doctor x′b → ma]doctor | ma.list = x′b.list, a ∈ {1, . . . , k}, b ∈ {1, . . . , l},

ma is the medicine associated to the health state x′b};
Rp = {[nurse[patient xbxb → x′bx

′′
b]patient]nurse, [patient max′′b → xcxc]patient

a ∈ {1, . . . , k}, b, c ∈ {1, . . . , l},
ma is the medicine that transforms the health state x′′b
into the health state xc}
∪{[nurse[patient xb]patient]nurse → [patient xb]patient[nurse t]nurse

| b ∈ {1, . . . , k}, xb indicates a restored health state}.

The P system has four “types” of membrane, extenv corresponds to the en-
vironment outside the monitoring system, the other labels correspond to doctor,
nurse and patient entities. In the initial configuration, the P system is formed by
an external environment membrane embedding a doctor membrane. The objects

98 M. Cavaliere, V. Deufemia

p and n active the rules for creating a patient and a nurse membrane, respec-
tively. The object sd is associated to the patient membranes and represents the
symptoms of the patient, their total number is m. Each object t associated to a
nurse membrane indicates a patient that can taken in charge. In this example, each
nurse can have at most five patients in charge since five t are initially associated to
each nurse membrane. The objects xb indicates the health states of the patients,
whereas the objects ma are the medicines prescribed by the doctor. Their total
number is l and k, respectively. The set of health states can be partitioned in the
set of restored health states and the set of ill health states.

The constructed P system simulates the dynamic aspects of the monitoring sys-
tem in the following way. Starting form the initial configuration, in region extenv
there are an unbounded number of occurrences of objects p and n, which can be
rewritten by the first and second rule in R or can be used to create patient and
nurse membranes by using the third and fourth rule in R; the rule selection is
done in a non deterministic way. The creation of the membranes simulates the
registration of new patients and nurses to the monitoring system. The patient has
associated two objects sd indicating the symptoms.

The patient moves into the doctor membrane by using the fifth rule, which
substitutes the symptom sd of the patient with two occurrences of xb indicating
the health state. Successively, the patient leaves the doctor membrane by using
the sixth rule in R, which is an exocytosis rule. Now, the patient can be assigned
to an available nurse (i.e., that has a t in its membrane) by using the first rule in
Rt if its xb is an ill health state. When the health state of a patient is restored,
the corresponding membrane leaves the nurse by using the last rule in Rp. The
eighth rule of R allows a nurse membrane to leave the monitoring system if it has
not patient in charge.

Let us now focus our attention on the evolution of a certain patient membrane.
Once the doctor has assigned an ill health state xb to the patient, the patient is
introduced in a nurse membrane and the two occurrences of xb are changed into
x′b and x′′b by using the first rule in Rp. Then x′b is sent to the doctor membrane
by using the ninth and tenth rule in R. Once in the doctor membrane, the health
state x′b is changed into a medicine ma that is one of the medicine associated to
such health state.

Notice that the object corresponding to the medicine has associated the same
string of identifiers associated to the health state, indicating in this way the path
that the medicine has to do in order to reaches the correct patient. The last rules
in R use the identifiers associated to ma for moving the medicine to the patient.
Finally, by using the second rule in Rp the health state of the patient evolves
according to the medicine prescribed by the doctor. This process is repeated for
each patient until its health state is restored. In this case, the patient leaves the
nurse membrane and its health state is periodically checked by the doctor by using
the last rule in Rt.

Figure 4 shows a configuration of the P system. In particular, the external
environment contains a recovered patient (its current health state is indicated by

Specifying Dynamic Software Architectures by Using Membrane Systems 99

the occurrence x1), a patient just arrived (contains the symptom s2s2), a patient
that has been checked by the doctor (its health state is x5), two nurses having in
charge one and two patients, respectively. The doctor has just received the health
state (x′2) of the patient having the object x′′2 , whereas the patient with health
state x′′4 has just requested a medicine. At the next step the patient with health
state x′′7 will receive the medicine m9 prescribed by the doctor, and its health state
will evolve with the rule m9x

′′
7 → xc, with xc a new health state.

x1 x1

Patient

Nurse

x4’’
ttt x4’

Patient

x2’’

Patient

Extenv

tttt m9

x7’’

x5 x5

Patient

Nurse

x2’

Doctor

Patient

s2s2

Patient

Fig. 4. A configuration of the ECam P system modelling the architecture of a system
for monitoring a hospital ward.

The system can be easily extended to support multiple wards. As an example,
Fig. 5 shows a P system configuration describing the architecture of a monitoring
system with several wards. In this system, when a patient membrane enters into
the system, a doctor determines to which ward the patient must be assigned.
Each ward contains a head physician that now works like the doctor in the above
described P system.

5 Studying the Behavior of the System: Some
Considerations

As mentioned in the Introduction one of the goal of the formal modelling of a
software system is to study properties of the designed system in a formal way.

A possible way to study properties of the system is to analyze the behavior
of the system, meaning with that, the sequence of configurations touched by the
systems during its evolutions. The study of the behavior of a membrane system
by using an appropriate observer has been introduced in [5].

100 M. Cavaliere, V. Deufemia

Nurse

x2’’

ttt x2’

Patient

x1x1

Ward

m6

Head phycian

Patient

Nurse

x4’’

ttt x4’

Patient

x2’’

Patient

Ward

Extenv

tttt m9

x7’’

x1x1

Patient

Nurse

x2’

Patient

s3s3

Patient

Nurse

x3’’

ttt x1’x3’

Patient

x1’’
Patient

Ward

tttt

x5

x6 x6

Patient

Nurse

Patient

Head phycian

Head phycian

Doctor

ttttt

Nurse

Fig. 5. A configuration of a ECam P system modelling the architecture of a system for
monitoring a hospital with multiple wards.

It is rather natural to consider the behavior of a membrane system like a string
of symbols, describing the sequence of configurations touched during the evolution
of the system. This approach can be used only when is possible to associate to
each configuration of the system a unique symbol of a finite alphabet; so it cannot
be used when the number of distinct configurations of the system is infinite – and
this is the case also for the P systems defined in the definition given in Section 2.

In fact, the presence of objects in unbounded number of occurrences of objects
in the initial configuration and the possibility to create new membranes guarantees
that the possible number of configurations reachable by the systems, during the
evolution, is infinite. On the other hand this fact guarantees that the model defined
in Section 2 is computationally universal (since it joins features, like antiports,
cooperative rules, of well-known universal models, [14]) and so, in informal words,
it can be used to model “everything”. Anyway, this computational universality is a
problem from a practical point of view; it is well-known that in a universal model
all non-trivial properties are undecidable, [7].

A possible solution to this problem is to model a system by using a (universal)
complete model (like the one defined here) but then to observe, in a clever way,
only a (sub)part of the model, studying properties only on the observed part.

Specifying Dynamic Software Architectures by Using Membrane Systems 101

The idea is to get a clever observation that, on one hand, still preserve the
“information” of the system, and, on the other hand, make easier to decide formal
properties.

This approach is similar to what has been done in [5] where a formal observer
has been introduced to study the behavior of a P system.

First, we fix some necessary notation. Σ denotes a finite non-empty alphabet,
Σ∗ the free monoid generated by this alphabet with concatenation, and λ, the
empty word, as its neutral element. When we speak about infinite words, wω

denotes the infinite catenation of w to the right and this is the only type of infinite
words we will consider. Thus Σω is the set of all infinite words, and Σ∞ := Σ∗∪Σω

is the set of all words.
For other details about the basic knowledge of formal languages, finite, infinite

words and Büchi automata we suggest the reader to consult the books [2, 7].
Given a P system Π, each configuration can be represented as a string of

brackets, representing the hierarchical structure of the membrane, together with
their associated contents.

Two strings represent the same configuration if one can be obtained by the
other one by exchanging pairs of brackets (together with their contents) repre-
senting regions at the same level in the system.

So, given a configuration c there are several strings representing c. All these
strings can be collected in a set and we choose a unique string in the set, represent-
ing the entire set. For simplicity of notation, when we refer to a configuration c then
c would formally denotes the string representing the set of all strings representing
the configuration c.

A P system Π, moves, at each step, from a configuration to the next one, by
using specified rules.

We define:

CΠ = {c | c is a configuration that the system Π reaches during a computation},

that is, the set of all possible configurations that the system Π can reach, during
any computation. Notice that the set CΠ can be finite or infinite, depending on
the system Π considered.

We construct a finite partition obs, standing for observer, of the set CΠ . Let
obs = CΠ1 ∪ CΠ2 · · · ∪ CΠk

. Given a configuration c, then [c]obs indicates the
(unique) set of the partition obs where the configuration c is present. We can
construct a labelling function lobs that associates to each set CΠi , 1 ≤ i ≤ k, a
unique label taken from a finite set of labels Σ.

For a sequence seq of configurations of Π, seq = c0, c1, · · · , ck, · · ·, we shortly
write lobs(seq) for the string lobs([c0]obs) · lobs([c1]obs) · · · lobs([ck]obs) · · ·.

We now can define the behavior Bobs(Π) of the system Π, according to the
partition obs:

Bobs(Π) = {lobs(seq) | seq ∈ SEQΠ},

102 M. Cavaliere, V. Deufemia

where SEQΠ is the set of all possible sequences of configurations during any
computation (halting or non halting) of the system Π.

Notice that Bobs(Π) is a language consisting of finite and infinite words over
the alphabet Σ. Simply by intersecting Bobs(Π) with a regular language we can
select finite behavior Bfin

obs (Π) and infinite behavior Binf
obs (Π).

Formally:
Bfin

obs (Π) = Bobs(Π) ∩Σ∗,

Binf
obs (Π) = Bobs(Π) ∩Σω.

The partition obs plays the role of an observer of the system Π: it groups, in
a specified way, the configurations of the system Π.

The defined languages may be too complex to be investigated. In fact, it is
known, that, for every recursively enumerable language L is possible to construct
a (simple) system Π, a partition obs such that Bfin

obs (Π) = L (for details we refer
to [5]).

Therefore, it seems necessary to find two languages, B̂obs
fin(Π) and B̂obs

inf (Π) that
are “approximations” of the behaviors Bfin

obs (Π) and Binf
obs (Π). The definition of

approximation is not formally given here and is left for the future work. For our
goal here is enough to have the intuitive idea that, given a language L, then the
language L̂ approximates L if L ⊆ L̂. Of course, a rather trivial approximation
of any language L over an alphabet Σ is the language Σ∗. But intuitively this
approximation is “too far” from L because it loses every information on the original
language.

Therefore the problem is to find good approximations, meaning with that a
language easy to analyze but not too far from the original language.

Coming back to our goal, given a behavior B (infinite or finite), we need to
find a behavior B̂ that is an approximation of B.

A possible approximation of a behavior is called automata approximation and
it is constructed in the following way.

Given a P system Π and a partition obs = CΠ1 ∪ CΠ2 · · · ∪ CΠk
of the set

CΠ , we construct a finite state automaton A′ = (K, V, s0, δ, F) in the following
way. Each state in K corresponds in a unique way to one of the subset composing
obs. The input alphabet V coincides with the set of states. The initial state s0

corresponds to the subset in obs having the initial configuration of Π. The set f
of states corresponds to the subsets of obs containing a halting configuration. The
transition δ is fixed in the following way. δ(CΠi , CΠj) = CΠj , 1 ≤ i, j ≤ k, if and
only if, the system Π can move, in one step of evolution, from a configuration
present in CΠi to a configuration present in CΠj .

In similar way we can construct a Büchi automaton A′′, except that in this
case the set of final states F coincides with K. It is clear that Bfin

obs (Π) ⊆ L(A′)
and Binf

obs (Π) ⊆ L(A′′) (so L(A′) and L(A′′) are approximations of Bfin
obs (Π) and

Binf
obs (Π), respectively).

Specifying Dynamic Software Architectures by Using Membrane Systems 103

Notice that the procedure given may be not effective. For this reason we say
that a behavior can be automata approximated if and only if the automaton defined
earlier can be effectively constructed.

Moreover, a system Π can be automata approximated if, and only if, its be-
havior can be automata approximated.

If the system Π has a finite number of configurations (i.e., the cardinality of
CΠ is finite), then the system can be automata approximated by using the trivial
partition obstotal constructed by just considering each configuration in CΠ as a
unitary set of the partition obstotal. Actually, in this trivial case we do not have an
approximation but actually the equality Bfin

obstotal
(Π) = L(A′) and Binf

obstotal
(Π) =

L(A′′).
Find good approximations for complicate behaviors is a rather challenging

topic, with several possible implications in different fields.
On the other hand, it is also interesting to individuate classes of systems that

can be automata approximated when using specified observers. These two problems
are left as open problems for further investigations.

We conclude by showing that it is possible to construct an observer obs such
that the system defined in Section 4 can be automata approximated and is possible
to investigate properties of the system by using such an approximation.

Informally, to construct the observer of the system, one needs to fix the com-
ponents of the system that have to be investigated. For instance, in our case, one
of the components of the system that may be interesting to study is the patient.

Initially we individuate the states of the patient which we consider interesting
for our investigation. For instance, these might correspond to: patient with some
symptoms, recovered in the hospital but not yet visited by a doctor; patient visited
by the doctor; patient under treatment; patient that is taking medicine; patient
restored.

Now, suppose that in the original configuration of the system Π, there exists
a patient represented by a membrane with label patient and with identifier id.

Then, it is possible to partition the set of all reachable configurations CΠ

according to the states of such specified patient.
In particular, we can construct the partition of CΠ , obspatient = C1∪C2∪C3∪

C4 ∪ C5, where:
C1 = {c | the membrane with identifier id contains the occurrence sd, d ∈

{1, · · · , m}}.
This set contains all the configurations in CΠ where the specified patient has

certain symptoms (indicated by s) but has not yet been visited by the doctor.
C2 = {c | the membrane with identifier id contains two occurrences of xb and

the membrane is inside a membrane with label doctor, b ∈ {1, · · · , l}}.
This set contains all the configurations in CΠ where the specified patient has

been visited by the doctor; xb indicates the health state associated by the doctor
to the patient, according to the symptoms.

104 M. Cavaliere, V. Deufemia

C3 = {c | the membrane with identifier id contains two occurrences of xb, the
membrane is inside a membrane with label nurse and xb is not a restored health
state, b ∈ {1, · · · , l}}.

This set contains all the configurations in CΠ where the patient is under treat-
ment (it is associated to a nurse); xb indicates the current health state of the
patient.

C4 = {c | the membrane with identifier id contains an occurrence of ma, a ∈
{1, · · · k}}.

This set contains all the configurations where the patient is taking a medicine;
ma identifies the medicine.

C5 = {c | the membrane with identifier id contains an occurrence of xb and xb

is a restored health state, b ∈ {1, · · · , l}}.
This set contains all the configurations in CΠ where the patient has been

restored; xb indicates a restored health state. It is possible to see that obspatient is
a partition of CΠ .

We are interested in Binf
obspatient

(Π). Looking at the P system Π described
in Section 4 we can construct the finite state automata that approximate
Binf

obspatient
(Π), in the way previously described.

In particular, looking to the rules of Π and following the procedure given earlier
is possible to construct the Büchi automaton represented in Fig. 6.

The language accepted by this automaton is exactly Binf
obspatient

(Π).

C1 C2

C5

C3C4

C2

C3

C4

C5

C2

C3

Fig. 6. The automaton for Binf
obspatient

(Π).

The automaton can be used to prove properties of the constructed system Π.
For instance, using the automaton it is possible to infer two important properties
of the system: the patient cannot take a medicine if s/he is not under treatment
because all the paths from state C1 to state C4 pass through state C3; moreover,
is also true that a patient cannot be under treatment if it has not been visited
by a doctor (in fact, the state C3 in the automaton can be reached only passing
through the state C2).

We can also see that the patient evolves in a deterministic way, that means
given a state (among the ones investigated), there is an unique possible next state
(among the ones investigated), except for the state C4; in this case, in fact, the

Specifying Dynamic Software Architectures by Using Membrane Systems 105

patient can either be restored (state C5) or can remain under treatment (state
C3).

It is possible to construct several automata, for each possible component we are
interested. For instance, it is possible to investigate the behavior of a nurse and of a
doctor by using the same approach used for a patient. Moreover it is also possible to
investigate properties concerning the entire system and the interactions between
the different components by using the cross-product operation, [17], among the
realized automata. On the other hand, the entire problem of approximation can
be formally investigated in the framework of rough sets theory dedicated to the
formal study of approximation, [16]. We leave these interesting topics for further
works.

References

1. R. Allen, D. Garlan: A formal basis for architectural connection. ACM Transactions
on Software Engineering and Methodology, 6, 3 (1997), 213–249.

2. J. Berstel, J.E. Pin: Infinite Words. Elsevier, Amsterdam, 2004.
3. N. Carriero, D. Gelerntern: Linda in context. Communications of the ACM, 32, 4

(1989), 444–458.
4. M. Cavaliere: Evolution–communication P systems. In Membrane Computing (Gh.

Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer-Verlag,
Berlin, 2003, 134–145.

5. M. Cavaliere, P. Leupold: Evolution and observation – A new way to look at mem-
brane systems. In Membrane Computing (C. Mart́ın-Vide, G. Mauri, Gh. Păun, G.
Rozenberg, A. Salomaa, eds.), LNCS 2933, Springer-Verlag, Berlin, 2004, 70–88.

6. A.A. Holzbacher: A software environment for concurrent coordinated programming.
Proc. First International Conference Coordination Models, Languages and Applica-
tions, LNCS 1061, Springer-Verlag, Berlin, 1996, 249–266.

7. J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

8. P. Inverardi, A.L. Wolf: Formal specification and analysis of software architecture
using the chemical abstract machine model, IEEE Transactions On Software Engi-
neering, 21, 4 (1995), 373–386.

9. J. Kramer: Configuration programming. A framework for the development of dis-
tributable systems. Proc. COMPEURO ’90, IEEE, 1990, 374–384.

10. N. Medvidovic, R.N. Taylor: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. on Software Engineering, 26,
1 (2000), 70–93.

11. D. Le Métayer: Describing software architecture styles using graph grammars. IEEE
Transactions on Software Engineering, 24, 7 (1998), 521–533.

12. Gh. Păun: Computing with membranes: Attacking NP-complete problems. In Un-
conventional Models of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen eds.),
Springer-Verlag, London, 2000, 94–115.

13. Gh. Păun: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

14. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.

106 M. Cavaliere, V. Deufemia

15. Gh. Păun, G. Rozenberg: A guide To membrane computing. Theoretical Computer
Science, 287, 1 (2002), 73–100.

16. Z. Pawlak: Rough sets. International Journal of Computer and Information Sciences,
11 (1981), 341–356.

17. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

18. D. Soni, R.L. Nord, C. Hofmeister: Software architecture in industrial applications.
Proc. of the Int. Conf. on Software Engineering, 1995, 196–207.

19. C. Szyperski: Component technology: What, where, and how? Proc. of the Int. Conf.
on Software Engineering, 2003, 684–693.

20. M. Wermelinger: Towards a chemical model for software architecture reconfiguration.
IEE Proceedings - Software, 145, 5 (1998), 130–136.

21. The P Systems Web Page: http://psystems.disco.unimib.it

