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The class DP

The complexity class DP was first introduced by Papadimitriou and
Yannakakis in 1982 1.

Difference between two languages in the class NP...

... or intersection of two languages:

L1 ∈ NP ∧ L2 ∈ co−NP

L = L1 ∩ L2 ∈ DP

NP ∪ co−NP ⊆ DP ⊆ PSPACE

1C. H. Papadimitriou, M. Yannakakis. The complexity of facets (and some facets of
complexity). Proceedings of the 24th ACM Symposium on the Theory of Computing.
1982, 229-234
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Main goals

If we can solve NP-complete problems in R then we can solve
DP-complete problems in R (R has to have some “features”).

Give a general methodology to solve products of problems.
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Product of two decision problems

X1 = (IX1 , θX1) and X2 = (IX2 , θX2): decision problems.

X1 ⊗ X2 = (IX1⊗X2 , θX1⊗X2): defined as follows:

IX1⊗X2 : IX1 × IX2 .

θX1⊗X2 = 1 iff θX1 = 1 ∧ θX2 = 1.

Some properties:

X1 ∈ NP ∧ X2 ∈ co−NP⇒ X1 ⊗ X2 ∈ DP.

X1 is NP-complete ∧ X2 is co-NP-complete ⇒ X1 ⊗ X2 is
DP-complete.

X is NP-complete ⇒ X ⊗ X is DP-complete.
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Product of families

Π(1) = {Π(1)(t1) : t1 ∈ N} solving X1 (X1 is NP-complete).

Π(2) = {Π(2)(t2) : t2 ∈ N} solving X2 (X2 is co-NP-complete).

Π(1),Π(2) ∈ R
Product of families:

Π(1) ⊗Π(2) = {Π(t) : t ∈ N}

Π(1)⊗Π(2) ∈ R′ (R ⊆ R′) solves X1⊗X2 (X1⊗X2 is DP-complete).
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General methodology (cell-like P systems)

rt

rΠ(1)(t1)

inΠ(1)(t1)

Π(1)(t1)

rΠ(2)(t2)

inΠ(2)(t2)

Π(2)(t2)
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General methodology

Mechanism to solve X1 ⊗ X2.

s(u) = 〈s1(u1), s2(u2)〉, cod(u) = cod1(u1) + cod2(u2).

Transport of the objects of cod(u) from rt to the input membranes
of Π(1) and Π(2).

Simulation of Π(1) and Π(2).

Output of the computation.
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General methodology

Two things to keep in mind:

We can need additional membranes in this stage (for polarization and
dissolution are necessary).

Objects do not have to reach rt at the same time.
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General methodology

With minimal cooperation, objects collaborate directly.

We can change the polarization of membranes in order to know
which elements have reached rt .

With dissolution, we can help objects to “see” where they are.
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Closure under product family

X1,X2 ∈ R ∧ X1 ⊗ X2 ∈ R′.

R = R′ ⇒ R is closed under product family.

And... Which families are closed under product family?

Some kind of collaboration is sufficient...
It is “easy” to get this behavior with some syntactic “ingredients”.

So... Ingredients are the key?

We have studied three ingredients: polarization, dissolution and
minimal cooperation.
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From NP-completeness to DP-completeness

Theorem

X is NP-complete, X ∈ PMCR and R is closed under product family,
then X ⊗ X ∈ PMCR, that is, DP ⊆ R.

Proof.

We remind that:

if X is an NP-complete problem, X ⊗ X is a DP-complete problem
(SAT-UNSAT);

if X ∈ PMCR, then X ∈ PMCR (closure under complementary);

so, X ⊗ X ∈ PMCR (by closure under product family).

11 / 12



From NP-completeness to DP-completeness

Theorem

X is NP-complete, X ∈ PMCR and R is closed under product family,
then X ⊗ X ∈ PMCR, that is, DP ⊆ R.

Proof.

We remind that:

if X is an NP-complete problem, X ⊗ X is a DP-complete problem
(SAT-UNSAT);

if X ∈ PMCR, then X ∈ PMCR (closure under complementary);

so, X ⊗ X ∈ PMCR (by closure under product family).

11 / 12



From NP-completeness to DP-completeness

Theorem

X is NP-complete, X ∈ PMCR and R is closed under product family,
then X ⊗ X ∈ PMCR, that is, DP ⊆ R.

Proof.

We remind that:

if X is an NP-complete problem, X ⊗ X is a DP-complete problem
(SAT-UNSAT);

if X ∈ PMCR, then X ∈ PMCR (closure under complementary);

so, X ⊗ X ∈ PMCR (by closure under product family).

11 / 12



From NP-completeness to DP-completeness

Theorem

X is NP-complete, X ∈ PMCR and R is closed under product family,
then X ⊗ X ∈ PMCR, that is, DP ⊆ R.

Proof.

We remind that:

if X is an NP-complete problem, X ⊗ X is a DP-complete problem
(SAT-UNSAT);

if X ∈ PMCR, then X ∈ PMCR (closure under complementary);

so, X ⊗ X ∈ PMCR (by closure under product family).

11 / 12



From NP-completeness to DP-completeness

Theorem

X is NP-complete, X ∈ PMCR and R is closed under product family,
then X ⊗ X ∈ PMCR, that is, DP ⊆ R.

Proof.

We remind that:

if X is an NP-complete problem, X ⊗ X is a DP-complete problem
(SAT-UNSAT);

if X ∈ PMCR, then X ∈ PMCR (closure under complementary);

so, X ⊗ X ∈ PMCR (by closure under product family).

11 / 12



THANKS FOR YOUR

ATTENTION!
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