From **NP**-completeness to **DP**-completeness: a general methodology to solve product families

David Orellana-Martín

Research Group on Natural Computing Dept. of Computer Science and Artificial Intelligence Universidad de Sevilla

Seville, Spain, January 31, 2017

The complexity class \mathbf{DP} was first introduced by Papadimitriou and Yannakakis in 1982 ¹.

¹C. H. Papadimitriou, M. Yannakakis. The complexity of facets (and some facets of complexity). *Proceedings of the 24th ACM Symposium on the Theory of Computing*. 1982, 229-234

The complexity class \mathbf{DP} was first introduced by Papadimitriou and Yannakakis in 1982 ¹.

• Difference between two languages in the class NP...

¹C. H. Papadimitriou, M. Yannakakis. The complexity of facets (and some facets of complexity). *Proceedings of the 24th ACM Symposium on the Theory of Computing*. 1982, 229-234

The complexity class \mathbf{DP} was first introduced by Papadimitriou and Yannakakis in 1982 ¹.

- Difference between two languages in the class NP...
- ... or intersection of two languages:

¹C. H. Papadimitriou, M. Yannakakis. The complexity of facets (and some facets of complexity). *Proceedings of the 24th ACM Symposium on the Theory of Computing*. 1982, 229-234

The complexity class \mathbf{DP} was first introduced by Papadimitriou and Yannakakis in 1982 ¹.

- Difference between two languages in the class NP...
- ... or intersection of two languages:

 $\mathcal{L}_1 \in \mathsf{NP} \land \mathcal{L}_2 \in \mathsf{co} - \mathsf{NP}$ $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2 \in \mathsf{DP}$

¹C. H. Papadimitriou, M. Yannakakis. The complexity of facets (and some facets of complexity). *Proceedings of the 24th ACM Symposium on the Theory of Computing*. 1982, 229-234

The complexity class \mathbf{DP} was first introduced by Papadimitriou and Yannakakis in 1982 ¹.

- Difference between two languages in the class NP...
- ... or intersection of two languages:

 $\mathcal{L}_1 \in \mathsf{NP} \land \mathcal{L}_2 \in \mathsf{co} - \mathsf{NP}$ $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2 \in \mathsf{DP}$

• $NP \cup co - NP \subseteq DP \subseteq PSPACE$

¹C. H. Papadimitriou, M. Yannakakis. The complexity of facets (and some facets of complexity). *Proceedings of the 24th ACM Symposium on the Theory of Computing*. 1982, 229-234

 If we can solve NP-complete problems in R then we can solve DP-complete problems in R (R has to have some "features").

- If we can solve NP-complete problems in R then we can solve DP-complete problems in R (R has to have some "features").
- Give a general methodology to solve products of problems.

 $X_1 = (I_{X_1}, \theta_{X_1})$ and $X_2 = (I_{X_2}, \theta_{X_2})$: decision problems.

$$X_1 = (I_{X_1}, \theta_{X_1})$$
 and $X_2 = (I_{X_2}, \theta_{X_2})$: decision problems.

• $X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$: defined as follows:

$$X_1 = (I_{X_1}, \theta_{X_1})$$
 and $X_2 = (I_{X_2}, \theta_{X_2})$: decision problems.
• $X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$: defined as follows:

•
$$I_{X_1\otimes X_2}$$
: $I_{X_1}\times I_{X_2}$.

$$X_1 = (I_{X_1}, \theta_{X_1})$$
 and $X_2 = (I_{X_2}, \theta_{X_2})$: decision problems.

• $X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$: defined as follows:

•
$$I_{X_1\otimes X_2}$$
: $I_{X_1}\times I_{X_2}$.

•
$$\theta_{X_1\otimes X_2} = 1$$
 iff $\theta_{X_1} = 1 \land \theta_{X_2} = 1$.

$$\begin{aligned} X_1 &= (I_{X_1}, \theta_{X_1}) \text{ and } X_2 &= (I_{X_2}, \theta_{X_2}): \text{ decision problems.} \\ \bullet \ X_1 \otimes X_2 &= (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2}): \text{ defined as follows:} \\ \bullet \ I_{X_1 \otimes X_2}: \ I_{X_1} \times I_{X_2}. \\ \bullet \ \theta_{X_1 \otimes X_2} &= 1 \text{ iff } \theta_{X_1} &= 1 \land \theta_{X_2} &= 1. \end{aligned}$$

Some properties:

•
$$X_1 \in \mathbf{NP} \land X_2 \in \mathbf{co} - \mathbf{NP} \Rightarrow X_1 \otimes X_2 \in \mathbf{DP}.$$

$$X_1 = (I_{X_1}, \theta_{X_1})$$
 and $X_2 = (I_{X_2}, \theta_{X_2})$: decision problems.

•
$$X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$$
: defined as follows:

•
$$I_{X_1\otimes X_2}$$
: $I_{X_1}\times I_{X_2}$.

•
$$\theta_{X_1\otimes X_2} = 1$$
 iff $\theta_{X_1} = 1 \land \theta_{X_2} = 1$.

Some properties:

- $X_1 \in \mathbf{NP} \land X_2 \in \mathbf{co} \mathbf{NP} \Rightarrow X_1 \otimes X_2 \in \mathbf{DP}$.
- X_1 is **NP**-complete $\land X_2$ is **co-NP**-complete $\Rightarrow X_1 \otimes X_2$ is **DP**-complete.

$$X_1 = (I_{X_1}, \theta_{X_1})$$
 and $X_2 = (I_{X_2}, \theta_{X_2})$: decision problems.

•
$$X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$$
: defined as follows:

•
$$I_{X_1\otimes X_2}$$
: $I_{X_1}\times I_{X_2}$.

•
$$\theta_{X_1\otimes X_2} = 1$$
 iff $\theta_{X_1} = 1 \land \theta_{X_2} = 1$.

Some properties:

- $X_1 \in \mathbf{NP} \land X_2 \in \mathbf{co} \mathbf{NP} \Rightarrow X_1 \otimes X_2 \in \mathbf{DP}.$
- X_1 is **NP**-complete $\land X_2$ is **co-NP**-complete $\Rightarrow X_1 \otimes X_2$ is **DP**-complete.
- X is **NP**-complete $\Rightarrow X \otimes \overline{X}$ is **DP**-complete.

• $\Pi^{(1)} = \{\Pi^{(1)}(t_1) : t_1 \in \mathbb{N}\}$ solving X_1 (X_1 is **NP**-complete).

- $\Pi^{(1)} = \{\Pi^{(1)}(t_1) : t_1 \in \mathbb{N}\}$ solving X_1 (X_1 is **NP**-complete).
- $\Pi^{(2)} = \{\Pi^{(2)}(t_2) : t_2 \in \mathbb{N}\}$ solving X_2 (X_2 is **co-NP**-complete).

- $\Pi^{(1)} = {\Pi^{(1)}(t_1) : t_1 \in \mathbb{N}}$ solving X_1 (X_1 is **NP**-complete).
- $\Pi^{(2)} = \{\Pi^{(2)}(t_2) : t_2 \in \mathbb{N}\}$ solving X_2 (X_2 is **co-NP**-complete).
- $\Pi^{(1)},\Pi^{(2)}\in\mathcal{R}$

- $\Pi^{(1)} = \{\Pi^{(1)}(t_1) : t_1 \in \mathbb{N}\}$ solving X_1 (X_1 is **NP**-complete).
- $\Pi^{(2)} = \{\Pi^{(2)}(t_2) : t_2 \in \mathbb{N}\}$ solving X_2 (X_2 is **co-NP**-complete).
- $\Pi^{(1)},\Pi^{(2)}\in\mathcal{R}$
- Product of families:

- $\Pi^{(1)} = \{\Pi^{(1)}(t_1) : t_1 \in \mathbb{N}\}$ solving X_1 (X_1 is **NP**-complete).
- $\Pi^{(2)} = \{\Pi^{(2)}(t_2) : t_2 \in \mathbb{N}\}$ solving X_2 (X_2 is **co-NP**-complete).
- $\Pi^{(1)},\Pi^{(2)}\in\mathcal{R}$
- Product of families:

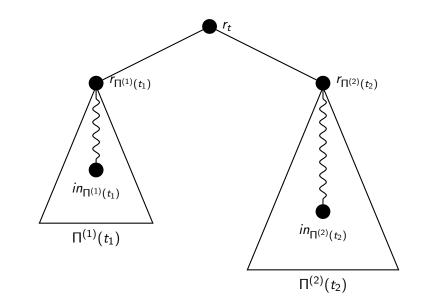
$$\mathsf{\Pi}^{(1)}\otimes\mathsf{\Pi}^{(2)}=\{\mathsf{\Pi}(t):t\in\mathbb{N}\}$$

- $\Pi^{(1)} = {\Pi^{(1)}(t_1) : t_1 \in \mathbb{N}}$ solving X_1 (X_1 is **NP**-complete).
- $\Pi^{(2)} = \{\Pi^{(2)}(t_2) : t_2 \in \mathbb{N}\}$ solving X_2 (X_2 is **co-NP**-complete).
- $\Pi^{(1)},\Pi^{(2)}\in\mathcal{R}$
- Product of families:

$${\sf \Pi^{(1)}}\otimes{\sf \Pi^{(2)}}=\{{\sf \Pi}(t):t\in\mathbb{N}\}$$

 $\Pi^{(1)} \otimes \Pi^{(2)} \in \mathcal{R}' \ (\mathcal{R} \subseteq \mathcal{R}') \text{ solves } X_1 \otimes X_2 \ (X_1 \otimes X_2 \text{ is } \mathbf{DP}\text{-complete}).$

General methodology (cell-like P systems)



• $s(u) = \langle s_1(u_1), s_2(u_2) \rangle$, $cod(u) = cod_1(u_1) + cod_2(u_2)$.

- $s(u) = \langle s_1(u_1), s_2(u_2) \rangle$, $cod(u) = cod_1(u_1) + cod_2(u_2)$.
- Transport of the objects of cod(u) from r_t to the input membranes of Π⁽¹⁾ and Π⁽²⁾.

- $s(u) = \langle s_1(u_1), s_2(u_2) \rangle$, $cod(u) = cod_1(u_1) + cod_2(u_2)$.
- Transport of the objects of cod(u) from r_t to the input membranes of Π⁽¹⁾ and Π⁽²⁾.
- Simulation of $\Pi^{(1)}$ and $\Pi^{(2)}$.

- $s(u) = \langle s_1(u_1), s_2(u_2) \rangle$, $cod(u) = cod_1(u_1) + cod_2(u_2)$.
- **Transport** of the objects of cod(u) from r_t to the input membranes of $\Pi^{(1)}$ and $\Pi^{(2)}$.
- Simulation of $\Pi^{(1)}$ and $\Pi^{(2)}$.
- **Output** of the computation.

General methodology

• Two things to keep in mind:

- Two things to keep in mind:
 - We can need additional membranes in this stage (for polarization and dissolution are necessary).

- Two things to keep in mind:
 - We can need additional membranes in this stage (for polarization and dissolution are necessary).
 - Objects do not have to reach r_t at the same time.

• With minimal cooperation, objects collaborate directly.

- With minimal cooperation, objects collaborate directly.
- We can change the **polarization** of membranes in order to know which elements have reached r_t .

- With minimal cooperation, objects collaborate directly.
- We can change the **polarization** of membranes in order to know which elements have reached r_t .
- With dissolution, we can help objects to "see" where they are.

• $X_1, X_2 \in \mathcal{R} \land X_1 \otimes X_2 \in \mathcal{R}'.$

- $X_1, X_2 \in \mathcal{R} \land X_1 \otimes X_2 \in \mathcal{R}'.$
- $\mathcal{R} = \mathcal{R}' \Rightarrow \mathcal{R}$ is closed under product family.

- $X_1, X_2 \in \mathcal{R} \land X_1 \otimes X_2 \in \mathcal{R}'.$
- $\mathcal{R} = \mathcal{R}' \Rightarrow \mathcal{R}$ is closed under product family.
- And... Which families are closed under product family?

- $X_1, X_2 \in \mathcal{R} \land X_1 \otimes X_2 \in \mathcal{R}'.$
- $\mathcal{R} = \mathcal{R}' \Rightarrow \mathcal{R}$ is closed under product family.
- And... Which families are closed under product family?
 - Some kind of collaboration is sufficient...

- $X_1, X_2 \in \mathcal{R} \land X_1 \otimes X_2 \in \mathcal{R}'.$
- $\mathcal{R} = \mathcal{R}' \Rightarrow \mathcal{R}$ is closed under product family.
- And... Which families are closed under product family?
 - Some kind of collaboration is sufficient...
 - It is "easy" to get this behavior with some syntactic "ingredients".

- $X_1, X_2 \in \mathcal{R} \land X_1 \otimes X_2 \in \mathcal{R}'.$
- $\mathcal{R} = \mathcal{R}' \Rightarrow \mathcal{R}$ is closed under product family.
- And... Which families are closed under product family?
 - Some kind of collaboration is sufficient...
 - It is "easy" to get this behavior with some syntactic "ingredients".
- So... Ingredients are the key?

- $X_1, X_2 \in \mathcal{R} \land X_1 \otimes X_2 \in \mathcal{R}'.$
- $\mathcal{R} = \mathcal{R}' \Rightarrow \mathcal{R}$ is closed under product family.
- And... Which families are closed under product family?
 - Some kind of collaboration is sufficient...
 - It is "easy" to get this behavior with some syntactic "ingredients".
- So... Ingredients are the key?
 - We have studied three ingredients: polarization, dissolution and minimal cooperation.

Theorem

X is **NP**-complete, $X \in \mathbf{PMC}_{\mathcal{R}}$ and \mathcal{R} is closed under product family, then $X \otimes \overline{X} \in \mathbf{PMC}_{\mathcal{R}}$, that is, $\mathbf{DP} \subseteq \mathcal{R}$.

Theorem

X is **NP**-complete, $X \in \mathbf{PMC}_{\mathcal{R}}$ and \mathcal{R} is closed under product family, then $X \otimes \overline{X} \in \mathbf{PMC}_{\mathcal{R}}$, that is, $\mathbf{DP} \subseteq \mathcal{R}$.

Proof.

We remind that:

Theorem

X is **NP**-complete, $X \in \mathbf{PMC}_{\mathcal{R}}$ and \mathcal{R} is closed under product family, then $X \otimes \overline{X} \in \mathbf{PMC}_{\mathcal{R}}$, that is, $\mathbf{DP} \subseteq \mathcal{R}$.

Proof.

We remind that:

 if X is an NP-complete problem, X ⊗ X is a DP-complete problem (SAT-UNSAT);

Theorem

X is **NP**-complete, $X \in \mathbf{PMC}_{\mathcal{R}}$ and \mathcal{R} is closed under product family, then $X \otimes \overline{X} \in \mathbf{PMC}_{\mathcal{R}}$, that is, $\mathbf{DP} \subseteq \mathcal{R}$.

Proof.

We remind that:

- if X is an NP-complete problem, X ⊗ X is a DP-complete problem (SAT-UNSAT);
- if $X \in \mathbf{PMC}_{\mathcal{R}}$, then $\overline{X} \in \mathbf{PMC}_{\mathcal{R}}$ (closure under complementary);

Theorem

X is **NP**-complete, $X \in \mathbf{PMC}_{\mathcal{R}}$ and \mathcal{R} is closed under product family, then $X \otimes \overline{X} \in \mathbf{PMC}_{\mathcal{R}}$, that is, $\mathbf{DP} \subseteq \mathcal{R}$.

Proof.

We remind that:

- if X is an NP-complete problem, X ⊗ X is a DP-complete problem (SAT-UNSAT);
- if $X \in \mathbf{PMC}_{\mathcal{R}}$, then $\overline{X} \in \mathbf{PMC}_{\mathcal{R}}$ (closure under complementary);
- so, $X \otimes \overline{X} \in \mathbf{PMC}_{\mathcal{R}}$ (by closure under product family).

THANKS FOR YOUR ATTENTION!