
Eduardo Sánchez Karhunen

BWMC 2017 Sevilla, February 3, 2017

Membrane Computing Applications

in Computational Economics

1. Preliminaries

2. Producer – Retailer problem: Initial Model
• Description.

• Formalization.

• Implementation in P – Lingua & MeCoSim.

• Simulation & Results discussion.

3. Producer – Retailer problem: Enhanced Model
• Description.

• Formalization.

• Implementation in P – Lingua & MeCoSim.

• Simulation & Results discussion.

4. Further developments

Membrane Computing Applications in Computational Economics

Contents

• Success of MC modeling biological systems

• Translation to unexplored field: Economic Modeling

• Replication of Păun’s Producer - Retailer Problem results:
• Selection of the proper type of P System

• Economic processes modeling

• Implementation in P-Lingua & MeCoSim

• Simulate & discuss results

• Extension of the original model with new economic
processes:

• Identification and modeling of processes

• Implementation & simulation

• Further developments

Membrane Computing Applications in Computational Economics

Motivation

Why not extend to other fields?

 Computational economics:
◦ Computational modeling of economic systems (ODEs, ABM, …)

 Up-to-date efforts:
• Polish authors: Korczynski (2005)

• Păun’s efforts:

• Membrane computing as a framework for modeling economic
processes. In Proc. SYNASC 05, Timisoara, Romania, IEEE Press, 2005,
11–18 Păun Gh. and Păun R. (2005)

• Păun Gh. and Păun R. Membrane Computing and Economics. In Păun
Gh., Rozenberg G., Salomaa, eds. (2010) A. Handbook of Membrane
Computing. Oxford University Press, 2010, 632-644

Membrane Computing Applications in Computational Economics

Păun’s proposals

 Encourage researchers of other areas to use P
Systems.

 Suggests modeling of some processes:

• Production of goods

• Order of goods

• Purchase transactions:

• Preferences between pairs (producer, retailer)

• Geographical barriers

• No distinction between counterparts

• Monetary unit exchange

• Capacity increase

Membrane Computing Applications in Computational Economics

Producer – Retailer Problem

Membrane Computing Applications in Computational Economics

Model Entities

 Generic sources:

• Of raw material (𝑢𝑆, generation rate)

• Of demand or Generic consumer

(𝑢𝐶, demand rate)

 Actors:

• Producers:

• (𝑏𝑖, 𝑢𝑖) -> (capacity, money)

• Retailers

• (𝑐𝑗, 𝑣𝑗) -> (capacity, money)

Membrane Computing Applications in Computational Economics

Model interactions

 Monetary flows:

• Monetary unit exchange (𝑢𝑆, 𝑢𝐶, 𝑢𝑖, 𝑢𝑗)

• A set of prices.

 External monetary injection:

• Key role for system evolving.

Membrane Computing Applications in Computational Economics

 Good’s and order’s flows:

• Producers generate good 𝑑 from raw
material.

• Retailers receive order ҧ𝑑 from generic
consumer.

• 𝑑 and ҧ𝑑 are matched

• Purchase 𝑃𝑖,𝑗 = 𝑃(𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑖, 𝑟𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝑗)
CYCLIC PROCESS

Summarized actors & interactions

Membrane Computing Applications in Computational Economics

Păun’s proposed system dynamic

 Presents a system behavior simulation:

Membrane Computing Applications in Computational Economics

Proposal - drawbacks

 Păun sketches the model:

• No indications about:

• Type of P System to be used.

• The sequence of steps of the cyclic behavior.

• The competing set of rules to be used.

• Probabilities associated to rules in a strange way.

• Randomness introduced in a naive way.

Membrane Computing Applications in Computational Economics

Non-as-usual

Reproducing Păun’s system evolution

 Define a so-called: Initial Model

 Steps:
◦ Select a type of P System -> PDP System.

 Probabilities associated to rules.

 Success in ecosystem modeling.

◦ Define the steps of the cycle:

 Associated to the transactions.

◦ Formalize the model.

◦ Stablish the set of rules:
 Following Păun’s guidelines.

 Avoid problems associated to “strange” probabilities.

Membrane Computing Applications in Computational Economics

skin
1

2

• Aggregate demand creation

• Raw material disposability

• Orders generation

• Production of goods
Cleaning and technical rules

Purchase authorizations
generation

Purchase transactions

1

2

34

5

Defining steps of cycle

Membrane Computing Applications in Computational Economics

1

2

2

4

INITIALIZATION

1

PRODUCTION

AUTHORIZATIONTRANSACTION

CLEANING

Model Formalization (I)

Membrane Computing Applications in Computational Economics

Π = (G, Γ, Σ, T, ℛE, μ, ℛΠ, fr ∈ ℛΠ , 𝑀1, 𝑀2)

Where:

 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝑒1 and 𝐸 = (𝑒1, 𝑒1) .

 Working alphabet: Γ = 𝑏𝑖 , 𝑑𝑖 , 𝑢𝑖 , 𝑐𝑗 , ҧ𝑑𝑗 , 𝑣𝑗, ҧ𝑒𝑗 , 𝑓𝑖,𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2 ∪ {𝑅1, 𝑅2} ∪ 𝐶, 𝑆, ҧ𝑑, 𝑎, 𝑢𝐶 , 𝑢𝑆

Where:

𝐶: aggregate generic consumer.

𝑆: raw material supplier.

ҧ𝑑: unit of aggregate demand from 𝐶.

𝑎: unit of supplied raw material provided by 𝑆.

𝑢𝐶: monetary unit owned by 𝐶.

𝑢𝑆: monetary unit owned by 𝑆.

𝑏𝑖: unit of production capacity of producer 𝑖.1 ≤ 𝑖 ≤ 𝑘1.

𝑑𝑖: unit of good supplied by producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

𝑢𝑖: monetary unit owned by producer 𝑖.1 ≤ 𝑖 ≤ 𝑘1.

𝑐𝑗: unit of capacity of retailer 𝑗.1 ≤ 𝑗 ≤ 𝑘2.

ҧ𝑑𝑗: unit of good demanded by retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2.

𝑣𝑗: monetary unit owned by retailer 𝑗.1 ≤ 𝑗 ≤ 𝑘2.

ҧ𝑒𝑗: unit of good demanded by retailer and authorized for

transaction unit of ҧ𝑑𝑗. 1 ≤ 𝑗 ≤ 𝑘2.

𝑓𝑖,𝑗: authorization for ҧ𝑑𝑗 to be exchange with 𝑑𝑖 . 1 ≤ 𝑖 ≤

𝑘1, 1 ≤ 𝑗 ≤ 𝑘2.

𝑅1, 𝑅2: for technical reasons.

PDP System of degree (2,1)

Model Formalization (II)

Membrane Computing Applications in Computational Economics

 Σ = ∅.

 𝑅𝐸 = ∅.

 Π = Γ, 𝜇, 𝑀1, 𝑀2 , ℛΠ where:

o Membrane structure: 𝜇 = [[]2]1.

o 𝑀1 = 𝐶, 𝑆, 𝑅1, 𝑅2 ∪ {𝑏
𝑖

𝑘𝑖,1 , 𝑢
𝑖

𝑘𝑖,2 : 1 ≤ 𝑖 ≤ 𝑘1} ∪ {𝑐
𝑗

𝑘𝑗,3
: 1 ≤ 𝑗 ≤ 𝑘2}

Initial multisets contain basically:

 𝑏
𝑖

𝑘𝑖,1 , 𝑢
𝑖

𝑘𝑖,2: producers’ initial parameters.

 𝑐
𝑗

𝑘𝑗,3: retailers’ initial capacities.

Where:

𝑘𝑖,1: initial production capacity of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

𝑘𝑖,2: initial monetary units of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

𝑘𝑗,3: initial capacity of retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2.

Model Parameters

Membrane Computing Applications in Computational Economics

 Goal: maximize model parametrization
 𝑘1: total number of producers.

 𝑘2: total number of retailers.

 𝑘3: units of raw material inserted into the system by 𝑆.

 𝑘4: allowed deviation from 𝑘3.

 𝑘5: units of aggregate demand inserted into the system by 𝐶.

 𝑘6: allowed deviation from 𝑘5.

 𝑘7: price fixed by 𝑆 for each unit of a.

 𝑘8: price fixed by 𝐶 as an estimation of each order of good.

 𝑘𝑖,1: initial production capacity of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

 𝑘𝑖,2: initial monetary units of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

 𝑘𝑗,3: initial capacity of retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2.

 𝑘𝑚,4: discrete prob. distribution of units of raw material inserted into the system by 𝑆. 1 ≤ 𝑚 ≤ 3.

 𝑘𝑚,5: discrete prob. distribution of units of aggregate demand inserted into the system by 𝐶. 1 ≤ 𝑚 ≤ 3.

 𝑘𝑖,6: price fixed by producer 𝑖 for each unit of 𝑑𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

 𝑘𝑗,7: price fixed by retailers 𝑗 for each order of good. 1 ≤ 𝑗 ≤ 𝑘2.

Set of rules – Initialization

Membrane Computing Applications in Computational Economics

 Step 1.a: raw material disposability

𝑟1 ≡ 𝑅1 𝑠 2

𝑘1,4
𝑎𝑘3+𝑘4 𝑠 𝑅1 2

+

𝑟2 ≡ 𝑅1 𝑠 2

𝑘2,4
𝑎𝑘3 𝑠 𝑅1 2

+

𝑟3 ≡ 𝑅1 𝑠 2

𝑘3,4
𝑎𝑘3−𝑘4 𝑠 𝑅1 2

+

𝑟4 ≡ 𝑅1 𝑠 2

1−𝑘1,4−𝑘2,4−𝑘3,4
𝑎𝑘3−2∗𝑘4 𝑠 𝑅1 2

+

 Step 1.b: generic demand creation

𝑟5 ≡ 𝑅2 𝑐 2

𝑘1,5 ҧ𝑑𝑘5+𝑘6 𝑢𝐶
(𝑘5+𝑘6)∗𝑘8𝑐 𝑅2 2

+

𝑟6 ≡ 𝑅2 𝑐 2

𝑘2,5 ҧ𝑑𝑘5 𝑢𝐶
𝑘5∗𝑘8𝑐 𝑅2 2

+

𝑟7 ≡ 𝑅2 𝑐 2

𝑘3,5 ҧ𝑑𝑘5−𝑘6 𝑢𝐶
(𝑘5−𝑘6)∗𝑘8𝑐 𝑅2 2

+

𝑟8 ≡ 𝑅2 𝑐 2

1−𝑘1,5−𝑘2,5−𝑘3,5 ҧ𝑑𝑘5−2∗𝑘6 𝑢𝐶
(𝑘5−2∗𝑘6)∗𝑘8𝑐 𝑅2 2

+

• Aggregate demand creation

• Raw material disposability

• Orders generation

• Production of goods
Cleaning and technical rules

Purchase authorizations
generation

Purchase transactions

1

2

34

5

𝑘3: units of raw material inserted into the system by 𝑆.

𝑘4: allowed deviation from 𝑘3.

𝑘𝑚,4: discrete prob. distr. of units of raw material inserted.

𝑘5: units of aggregate demand inserted by C.

𝑘6: allowed deviation from 𝑘5.

𝑘𝑚,5: discrete prob. distr. of units of aggr. demand inserted.

Set of rules – Production

Membrane Computing Applications in Computational Economics

 Step 2.a: producer operation

𝑟9 ≡ 𝑎 𝑏𝑖 𝑢𝑖
𝑘7

2
+ → 𝑢𝑆

𝑘7 𝑑𝑖 2
0 1 ≤ 𝑖 ≤ 𝑘1

 Step 2.b: retailer operation

𝑟10 ≡ ҧ𝑑 𝑐𝑗 𝑢𝐶
𝑘𝑗,7

2
+ → ҧ𝑑𝑗𝑣𝑗

𝑘𝑗,7
2

0
1 ≤ 𝑗 ≤ 𝑘2

• Aggregate demand creation

• Raw material disposability

• Orders generation

• Production of goods
Cleaning and technical rules

Purchase authorizations
generation

Purchase transactions

1

2

34

5

𝑘1: total number of producers.

𝑘2: total number of retailers.

𝑘7: price fixed by 𝑆 for each unit of a.

𝑘𝑗,7: price fixed by retailers 𝑗 for each order of good.

Set of rules – Auth. & Trans.

Membrane Computing Applications in Computational Economics

 Step 3: Purchase auth. generation

𝑟14 ≡ ҧ𝑑1 2
→ ҧ𝑒1𝑓1,1 2

𝑟15 ≡ ҧ𝑑1 2
→
0

ҧ𝑒1𝑓1,2 2

𝑟16 ≡ ҧ𝑑2 2

0.5
ҧ𝑒2𝑓2,1 2

𝑟17 ≡ ҧ𝑑2 2

0.5
ҧ𝑒2𝑓2,2 2

𝑟18 ≡ ҧ𝑑3 2

0.15
ҧ𝑒3𝑓3,1 2

𝑟19 ≡ ҧ𝑑3 2

0.85
ҧ𝑒3𝑓3,2 2

 Step 4: Purchase transactions

𝑟20 ≡ 𝑑i ҧ𝑒j𝑓j,i𝑣j
𝑘i,6

2

0
→ 𝑏i𝑐j𝑢i

𝑘i,6
2

−
1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2

• Aggregate demand creation

• Raw material disposability

• Orders generation

• Production of goods
Cleaning and technical rules

Purchase authorizations
generation

Purchase transactions

1

2

34

5

𝑘1: total number of producers.

𝑘2: total number of retailers.

𝑘𝑖,6: price fixed by producer 𝑖 for each unit of 𝑑𝑖.

Solution: 𝑓𝑖,𝑗 follows the probability distribution of the desired transactions

probabilities.

Preferences

Non-preferences

Geo-barriers

Set of rules – Cleaning

Membrane Computing Applications in Computational Economics

 Step 5: cleaning rules

Eliminate non-exhausted authorizations:

𝑟26 ≡ 𝑓𝑖,𝑗 2

−
→ 2

0 1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2

Unauthorize non-exhausted ҧ𝑒𝑗:

𝑟27 ≡ ҧ𝑒𝑗 2

−
→ ҧ𝑑𝑗 2

0 1 ≤ 𝑗 ≤ 𝑘2

Signaling a new cycle:
𝑟30 ≡ 𝑟1, 𝑟2 2

− → 𝑟1, 𝑟2 2
0

• Aggregate demand creation

• Raw material disposability

• Orders generation

• Production of goods
Cleaning and technical rules

Purchase authorizations
generation

Purchase transactions

1

2

34

5

𝑘1: total number of producers.

𝑘2: total number of retailers.

P - Lingua

Membrane Computing Applications in Computational Economics

 Set of rules has been implemented in P – Lingua.

 An example for each set of rules:

◦ Initialization:
/∗ 𝑟2 ∗/ 𝑠, 𝑅1

′2 −→ 𝑠, 𝑎 ∗ 𝑘 3 + 𝑅1
′2 ∶: 𝑘2,4;

◦ Production:
/∗ 𝑟9 ∗/ 𝑏 𝑖 , 𝑎, 𝑢 𝑖 ∗ 𝑘 7 + ′2 −→ 𝑢𝑠 ∗ 𝑘 7 𝑑 𝑖 ′2 ∶: 1 ∶ 1 ≤ 𝑖 ≤ 𝑘{1}

◦ Authorization:
/∗ 𝑟18 ∗/ 𝑑𝑛 3 ′2 −→ 𝑒𝑛 3 , 𝑓{3,1} ′2 ∶: 0.15

◦ Transaction:

/∗ 𝑟20 ∗/ 𝑑 𝑖 , 𝑒𝑛 𝑗 , 𝑓 𝑗, 𝑖 , 𝑣 𝑗 ∗ 𝑘{𝑖, 6} ′2 −→ − 𝑏 𝑖 , 𝑐 𝑗 , 𝑢 𝑖 ∗ 𝑘{𝑖, 6} ′2 ∶: 1 1 ≤ 𝑖 ≤
𝑘 1 , 1 ≤ 𝑗 ≤ 𝑘{2}

Simplified trace

Membrane Computing Applications in Computational Economics

Simulation parameters
 Simulation tool: MeCoSim

 Parameters: same as Păun’s paper

Membrane Computing Applications in Computational Economics

Parameter Value/s Description

𝑘1 2 Total number of producers

𝑘2 3 Total number of retailers

𝑘3 60 Units of raw material inserted into the system by 𝑆

𝑘4 1 Deviation from 𝑘3

𝑘5 60 Units of aggregate demand inserted into the system by 𝐶

𝑘6 1 Deviation from 𝑘5

𝑘7 11 Price fixed by 𝑆 for each unit of a

𝑘8 14 Price fixed by 𝐶 as an estimation of each order of good

𝑘𝑖,1 (65,35) Initial production capacity of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1

𝑘𝑖,2 {750,400) Initial monetary units of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1

𝑘𝑗,3 (50,30,20) Initial capacity of retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2

𝑘𝑚,4 (0.01,0.95,0.03) Values of discrete probability distribution of units of raw material

inserted into the system by 𝑆

𝑘𝑚,5 (0.03,0.90,0.04) Values of discrete probability distribution of units of aggregate

demand inserted into the system by 𝐶

𝑘𝑖,6 (12,13) Price fixed by producer 𝑖 for each unit of 𝑑𝑖

𝑘𝑗,7 (13,14,15) Price fixed by retailer 𝑗 for each order of good 𝑗. 1 ≤ 𝑗 ≤ 𝑘2

MeCoSim definition

Membrane Computing Applications in Computational Economics

Parameter Value Description

𝑘1
<@r,1>

Index 1 = 1
Captures number of producers based on the number of rows in table Producer_input

𝑘2
<@r,8>

Index 2 = 2
Captures number of retailers based on the number of rows in table Retailer_input

𝑘3

<9,1-2,2>

Index 1 =

[3..<@r,9>+2]

Units of raw material inserted into the system by 𝑆

𝑘4 Deviation from 𝑘3

𝑘5 Units of aggregate demand inserted into the system by 𝐶

𝑘6 Deviation from 𝑘5

𝑘7 Price fixed by 𝑆 for each unit of a

𝑘8 Price fixed by 𝐶 as an estimation of each order of good

𝑘𝑖,1 <1,1,2+3>

Index 1 = [1..k{1}]

Index 2 = [1..2]

Initial production capacity of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1

𝑘𝑖,2 Initial monetary units of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1

𝑘𝑗,3

<8,1,4>

Index 1 = [1..k{2}]

Index 2 = 3

Initial capacity of retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2

𝑘𝑚,4
<10,1,2-3>

Index 1 = [1..<@r,10>]

Index 2 = [4..5]

Values of discrete probability distribution of units of raw material inserted into the system by 𝑆

𝑘𝑚,5 Values of discrete probability distribution of units of aggregate demand inserted into the system by 𝐶

𝑘𝑖,6

<1,1,6>

Index 1 = [1..k{1}]

Index 2 = 6

Price fixed by producer 𝑖 for each unit of 𝑑𝑖

𝑘𝑗,7

<8,1,5>

Index 1 = [1..k{2}]

Index 2 = 7

Price fixed by retailer 𝑗 for each order of good 𝑗. 1 ≤ 𝑗 ≤ 𝑘2

Simulation results – monetary units

Membrane Computing Applications in Computational Economics

Producers’ monetary units

Retailers’ monetary units

Simulation results - capacities

Membrane Computing Applications in Computational Economics

Producers’ capacities

Retailers’ capacities

Simulation results - comparison

Membrane Computing Applications in Computational Economics

Initial model evolutionPăun's evolution

Enhanced Model

 Summarized behavior of Initial Model:
◦ A steady increase of monetary units owned by producers, retailers and generic

consumer.

◦ Nearly stable producer’s and retailer’s capacities.

◦ Monetary units obtained by raw source of material get out of circulation.

 Why?
◦ Producers’ & retailers’ capacities are fixed and no changes are allowed.

◦ Raw material and aggregate demand are initially settled and remain unchanged
during the system evolution.

◦ Artificial exogenous injection of monetary units into consumer 𝐶 at the
beginning of each cycle. This flow is necessary to maintain system evolving.

Membrane Computing Applications in Computational Economics

Enhanced Model

 Getting closer to real situations:

◦ Allowing variations of producers’ and retailers’ capacities:
 Capital stock depreciation.

 Investment or capital increase decision.

◦ Remove external injection of monetary units:
 Payment of rents to the owners of the production factors.

 Raw material source is owned by the aggregate consumer.

 Aggregate consumer is stakeholder of producers and retailers, thus
implying dividends payments.

◦ Inclusion of randomness in a PDP-way:
 Raw material generation.

 Aggregate demand generation.

 Mechanism of capacity increase decision.

Membrane Computing Applications in Computational Economics

Producer – Retailer Enhanced Model

Membrane Computing Applications in Computational Economics

Model Entities

 Generic sources:

• Of raw material (𝑢𝑆, generation rate)

• Of demand or Generic consumer

(𝑢𝐶, demand rate)

 Actors:

• Producers:

• (𝑏𝑖, 𝑢𝑖) -> (capacity, money)

• Retailers

• (𝑐𝑗, 𝑣𝑗) -> (capacity, money)

Membrane Computing Applications in Computational Economics

Model interactions

 External monetary injection:

• Removed.

Membrane Computing Applications in Computational Economics

 Good’s and order’s flows:

• Producers generate good 𝑑 from raw material.

• Retailers receive order ҧ𝑑 from generic
consumer.

• 𝑑 and ҧ𝑑 are matched

• Purchase 𝑃𝑖,𝑗 = 𝑃(𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑖, 𝑟𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝑗)

CYCLIC PROCESS

Additional interactions

 Capacity variations:
• Producers’ capacity depreciation.

• Producers’ capacity increase decision: non-
satisfied demand from retailers.

Membrane Computing Applications in Computational Economics

 Monetary flows:
• Initial Model monetary exchange due to prices.

• Rents payments to owners: Generic Consumer.

• Dividends payments to stakeholders: Generic
Consumer.

• Raw material source owners: Generic
Consumer.

CYCLIC PROCESS

Defining steps of cycle

Membrane Computing Applications in Computational Economics

1 1

2

2

4

• Capacity cost payments

• Aggregate demand creation

• Raw material disposability

• Orders generation

• Production of goods

BASIC MODEL

• Dividend payments

• Capacity increase decision

• Capacity depreciation

Purchase authorizations
generation

Purchase transactions

1

2

34

5

1
1

5

5

INITIALIZATION

PRODUCTION

AUTHORIZATIONTRANSACTION

EVOLUTION

Model Formalization (I)

Membrane Computing Applications in Computational Economics

Π = (G, Γ, Σ, T, ℛE, μ, ℛΠ, fr ∈ ℛΠ , 𝑀1, 𝑀2)

Where:

 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝑒1 and 𝐸 = (𝑒1, 𝑒1) .

 Working alphabet: Γ𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑= Γ𝑖𝑛𝑖𝑡𝑖𝑎𝑙/ 𝑢𝑆, 𝑅2 ∪ 𝑔𝑖 , 𝑦𝑖 , , 𝑚𝑖 , 𝑧𝑖 , ℎ𝑖: 1 ≤ 𝑖 ≤ 𝑘1} ∪ { 𝑝, 𝑞

Where:

𝐶: aggregate generic consumer.

𝑆: raw material supplier.

ҧ𝑑: unit of aggregate demand from 𝐶.

𝑎: unit of supplied raw material provided by 𝑆.

𝑢𝐶: monetary unit owned by 𝐶.

𝑏𝑖: unit of production capacity of producer 𝑖.1 ≤ 𝑖 ≤ 𝑘1.

𝑑𝑖: unit of good supplied by producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

𝑢𝑖: monetary unit owned by producer 𝑖.1 ≤ 𝑖 ≤ 𝑘1.

𝑐𝑗: unit of capacity of retailer 𝑗.1 ≤ 𝑗 ≤ 𝑘2.

ҧ𝑑𝑗: unit of good demanded by retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2.

𝑣𝑗: monetary unit owned by retailer 𝑗.1 ≤ 𝑗 ≤ 𝑘2.

ҧ𝑒𝑗: unit of good demanded by retailer and authorized

for transaction unit of ҧ𝑑𝑗. 1 ≤ 𝑗 ≤ 𝑘2.

𝑓𝑖,𝑗: authorization for ҧ𝑑𝑗 to be exchange with 𝑑𝑖 . 1 ≤ 𝑖 ≤

𝑘1, 1 ≤ 𝑗 ≤ 𝑘2.

𝑅1: for technical reasons.

𝑝: randomness generator for 𝑎 provision by 𝑆.

𝑞: randomness generator for ҧ𝑑 generation by 𝐶.

ℎ𝑖 : unit of production capacity of producer 𝑖 before

depreciation.1 ≤ 𝑖 ≤ 𝑘1.

𝑦𝑖 : unit (in idle state) of aborted purchase transactions

considered for capacity increase. 1 ≤ 𝑖 ≤ 𝑘1.

𝑚𝑖: randomness generator for 𝑦𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

𝑧𝑖 : activated unit of aborted purchase transactions

considered for capacity increase. 1 ≤ 𝑖 ≤ 𝑘1.. 1 ≤ 𝑖 ≤ 𝑘1.

𝑔𝑖: for technical reasons. 1 ≤ 𝑖 ≤ 𝑘1

PDP System of degree (2,1)

Model Formalization (II)

Membrane Computing Applications in Computational Economics

 Σ = ∅.

 𝑅𝐸 = ∅.

 Π = Γ, 𝜇, 𝑀1, 𝑀2 , ℛΠ where:

o Membrane structure: 𝜇 = [[]2]1.

o 𝑀1 = 𝐶, 𝑆, 𝑅1 ∪ 𝑔𝑖 , 𝑢𝑖
𝑘𝑖,1∗𝑘10∗7: 1 ≤ 𝑖 ≤ 𝑘1}, {𝑣𝑗

𝑘𝑗,3∗𝑘10∗7
: 1 ≤ 𝑗 ≤ 𝑘2

o 𝑀2 = 𝑐
𝑗

𝑘𝑗,3
: 1 ≤ 𝑗 ≤ 𝑘2 ∪ {𝑏

𝑖

𝑘𝑖,1: 1 ≤ 𝑖 ≤ 𝑘1}

Initial multisets contain basically:

 𝑏𝑖
𝑘𝑖,1 , 𝑢𝑖

𝑘𝑖,1∗𝑘10∗7: producers’ initial parameters.

 𝑐
𝑗

𝑘𝑗,3 , 𝑣
𝑗

𝑘𝑗,3∗𝑘10∗7: retailers’ initial parameters.

They need same initial amount of monetary units to pay initial

capacity costs. Where:

𝑘𝑖,1: initial production capacity of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

𝑘𝑗,3: initial capacity of retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2.

Model Parameters

Membrane Computing Applications in Computational Economics

 Goal: maximize model parametrization
 𝑘1: total number of producers.

 𝑘2: total number of retailers.

 𝑘3: raw material inserted into the system by 𝑆 – minimum value of range

 𝑘4: raw material inserted into the system by 𝑆 – maximum value of range.

 𝑘5: aggregate demand inserted into the system by 𝐶 – minimum value of range.

 𝑘6: aggregate demand inserted into the system by 𝐶 – maximum value of range.

 𝑘7: price fixed by 𝑆 for each unit of a.

 𝑘8: number of failed purchases considered for the analysis of increasing capital stock – minimum value.

 𝑘9: number of failed purchases considered for the analysis of increasing capital stock – maximum value.

 𝑘10: cost of capital stock per cycle.

 𝑘11: depreciation rate of capital stock.

 𝑘12: step of capacity increase.

 𝑘13: dividend percentage.

 𝑘𝑖,1: initial production capacity of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

 𝑘𝑖,2: price fixed by producer 𝑖 for each unit of 𝑑𝑖. 1 ≤ 𝑖 ≤ 𝑘1.

 𝑘𝑗,3: initial capacity of retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2.

 𝑘𝑖,6: price fixed by retailers 𝑗 for each order of good. 1 ≤ 𝑗 ≤ 𝑘2.

Set of rules – Initialization

Membrane Computing Applications in Computational Economics

 From Naïve randomness:

𝑟5 ≡ 𝑅2 𝑐 2

𝑘1,5 ҧ𝑑𝑘5+𝑘6𝑐 𝑅2 2
+

𝑟6 ≡ 𝑅2 𝑐 2

𝑘2,5 ҧ𝑑𝑘5 𝑐 𝑅2 2
+

𝑟7 ≡ 𝑅2 𝑐 2

𝑘3,5 ҧ𝑑𝑘5−𝑘6 𝑐 𝑅2 2
+

𝑟8 ≡ 𝑅2 𝑐 2

1−𝑘1,5−𝑘2,5−𝑘3,5 ҧ𝑑𝑘5−2∗𝑘6 𝑐 𝑅2 2
+

 To a PDP-way: raw material disposability & generic demand
creation:

𝑟1 ≡ 𝑅1 𝑠 𝑐 2 → 𝑎𝑘3 𝑝𝑘4−𝑘3 ҧ𝑑𝑘5 𝑞𝑘6−𝑘5𝑠 𝑐 𝑅1 2
+

𝑟2 ≡ 𝑝 2
−
0.5

2
+

𝑟3 ≡ 𝑝 2
−
0.5

𝑎 2
+

𝑟4 ≡ 𝑞 2
−
0.5

2
+

𝑟5 ≡ 𝑞 2
−
0.5

ҧ𝑑 2
+

Generates ҧ𝑑 around 𝑘5

Generates [ҧ𝑑𝑘5 , ҧ𝑑𝑘6]

Generates [𝑎𝑘3 , 𝑎𝑘4]

Set of rules – Capacity costs

Membrane Computing Applications in Computational Economics

 Rents for capacity:

◦ Generic consumer is the owner of production factors.

◦ Agents have enough monetary units to pay for capacity:

𝑟9 ≡ 𝑢𝑖
𝑘10 𝑏𝑖 2 → 𝑏𝑖 𝑢𝐶

𝑘10
2
+1 ≤ 𝑖 ≤ 𝑘1

𝑟10 ≡ 𝑣𝑗
𝑘10 𝑐𝑗 2

→ 𝑐𝑗 𝑢𝐶
𝑘10

2
+1 ≤ 𝑗 ≤ 𝑘2

◦ Agents are not able to pay for capacity:

𝑟11 ≡ 𝑏𝑖 2
+ → 𝑢𝐶

𝑘10
21 ≤ 𝑖 ≤ 𝑘1

𝑟12 ≡ 𝑐𝑗 2

+
→ 𝑢𝐶

𝑘10
21 ≤ 𝑗 ≤ 𝑘2

𝑘1: total number of producers.

𝑘2: total number of retailers.

𝑘10: cost of capital stock per cycle.

Set of rules – Operations

Membrane Computing Applications in Computational Economics

 Main changes:
◦ Generic consumer is the owner of raw material source

 Producer operation:
𝑟14 ≡ 𝑎 𝑏𝑖 𝑢𝑖

𝑘7
2
+ → 𝑢𝐶

𝑘7 𝑑𝑖 2
0 1 ≤ 𝑖 ≤ 𝑘1

 Retailer operation:

𝑟15 ≡ ҧ𝑑 𝑐𝑗 𝑢𝐶
𝑘𝑗,6

2
+ → ҧ𝑑𝑗𝑣𝑗

𝑘𝑗,6
2

0
1 ≤ 𝑗 ≤ 𝑘2

 Unused capacities:
𝑟16 ≡ 𝑏𝑖 2 → 𝑏𝑖 2 1 ≤ 𝑖 ≤ 𝑘1

𝑟17 ≡ 𝑐𝑗 2 → 𝑐𝑗 2
1 ≤ 𝑗 ≤ 𝑘2

𝑘1: total number of producers.

𝑘2: total number of retailers.

𝑘7: price fixed by 𝑆 for each unit of a.

𝑘𝑖,6: price fixed by retailers 𝑗 for each order of good.

𝑘𝑗,7: price fixed by retailers 𝑗 for each order of good.

Retired from the operational membrane

waiting for their depreciation.

Set of rules – Auth. & Transactions

Membrane Computing Applications in Computational Economics

 Purchase authorization generation

𝑟18 ≡ ҧ𝑑1 2
→ ҧ𝑒1𝑓1,1 2

𝑟19 ≡ ҧ𝑑1 2
→
0

ҧ𝑒1𝑓1,2 2

𝑟20 ≡ ҧ𝑑2 2

0.5
ҧ𝑒2𝑓2,1 2

𝑟21 ≡ ҧ𝑑2 2

0.5
ҧ𝑒2𝑓2,2 2

𝑟22 ≡ ҧ𝑑3 2

0.15
ҧ𝑒3𝑓3,1 2

𝑟23 ≡ ҧ𝑑3 2

0.85
ҧ𝑒3𝑓3,2 2

 Purchase transactions

𝑟24 ≡ 𝑑i ҧ𝑒j𝑓j,i𝑣j
𝑘i,2

2

0
→ 𝑢i

𝑘i,2 ℎi 𝑐j 2

−
1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2

𝑘1: total number of producers.

𝑘2: total number of retailers.

𝑘𝑖,2: price fixed by producer 𝑖 for each unit of 𝑑𝑖 .

Preferences

Non-preferences

Geo-barriers

𝑏i are retired as ℎi from the operational membrane waiting for their depreciation.

Set of rules - Evolution

Membrane Computing Applications in Computational Economics

 Dividend payment:

𝑟25 ≡ 𝑣j 2

−
→ 𝑣j 2

0 1 ≤ 𝑗 ≤ 𝑘2

𝑟26 ≡ 𝑢i 2
−
𝑘13

𝑢C 2
0 1 ≤ 𝑖 ≤ 𝑘1

𝑟27 ≡ 𝑢i 2
−
1− 𝑘13

𝑢i 2
0 1 ≤ 𝑖 ≤ 𝑘1

 Capacity depreciation:

𝑟31 ≡ ℎi 2
−
1− 𝑘11

𝑏i 2
0 1 ≤ 𝑖 ≤ 𝑘1

𝑟32 ≡ ℎi 2
−
𝑘11

2
0 1 ≤ 𝑖 ≤ 𝑘1

𝑘1: total number of producers.

𝑘2: total number of retailers.

𝑘11: depreciation rate of capital stock.

𝑘13: dividend percentage.

Both blocks of rules only applied to producers

Set of rules – capacity increase

Membrane Computing Applications in Computational Economics

 When strictly necessary only

 Trigger: non-exhausted 𝑓j,i
• Case a: Enough producer capacity:

𝑟28 ≡ 𝑓j,i 𝑑i 2

−
→ 𝑑i 2

0 1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2

𝑟29 ≡ 𝑓j,i ℎi 2

− 1− 𝑘11
𝑏i 2

0 1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2

𝑟30 ≡ 𝑓j,i ℎi 2

− 𝑘11
2
0 1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2

• Case b: Not enough producer capacity:

𝑟6 ≡ 𝑔i 2
0 → 𝑔i 𝑦i

𝑘8 𝑚i
(𝑘9− 𝑘8)

2

+
1 ≤ 𝑖 ≤ 𝑘1

𝑟7 ≡ 𝑚i 2
+
0.5

2
0 1 ≤ 𝑖 ≤ 𝑘1

𝑟8 ≡ 𝑚i 2
+
0.5

𝑦i 2
0 1 ≤ 𝑖 ≤ 𝑘1

𝑟33 ≡ 𝑦i 2
− → 𝑧i 2

0 1 ≤ 𝑖 ≤ 𝑘1

𝑟34 ≡ 𝑓j,i 𝑧i 2

0
→ 𝑏i

𝑘12
2
+ 1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2

𝑘1: total number of producers.

𝑘2: total number of retailers.

𝑘8 : number of failed purchases

considered for the analysis of

increasing capital stock – min

value.

𝑘9 : number of failed purchases

considered for the analysis of

increasing capital stock – max

value.

𝑘11 : depreciation rate of capital

stock.

.

Generates [𝑦i
𝑘8 , 𝑦i

𝑘9]

Set of rules – Cleaning

Membrane Computing Applications in Computational Economics

 Cleaning rules and technical rules

◦ Eliminate non-exhausted authorizations:

𝑟35 ≡ 𝑓j,i 2

+
→ 2

0 1 ≤ 𝑖 ≤ 𝑘1, 1 ≤ 𝑗 ≤ 𝑘2

𝑟36 ≡ 𝑧i 2
+ → 2

0 1 ≤ 𝑖 ≤ 𝑘1

◦ Unauthorize non-exhausted ҧ𝑒𝑗:

𝑟13 ≡ 𝑣𝑗 2
+ → 𝑣𝑗 2

0
1 ≤ 𝑗 ≤ 𝑘2

𝑟37 ≡ ҧ𝑒𝑗 2

+
→ ҧ𝑑𝑗 2

0
1 ≤ 𝑗 ≤ 𝑘2

◦ Signaling a new cycle:

𝑟38 ≡ 𝑟1 2
− → 𝑟1 2

0

𝑟39 ≡ 𝑔𝑖 2
− → 𝑔𝑖 2

0 1 ≤ 𝑗 ≤ 𝑘2

𝑘1: total number of producers.

𝑘2: total number of retailers.

P - Lingua

Membrane Computing Applications in Computational Economics

 Set of rules has been implemented in P – Lingua.

 An example for each set of rules:

◦ Initialization:
/∗ 𝑟1 ∗/ 𝑠, 𝑐, 𝑟1 ′2 → 𝑠, 𝑐, 𝑎 ∗ 𝑘{3}, 𝑝 ∗ (𝑘{4} − 𝑘{3}), 𝑑𝑛 ∗ 𝑘{5}, 𝑞 ∗ (𝑘{6} − 𝑘{5})

+ 𝑟1 ′2: : 1

◦ Production:
/∗ r9 ∗/ 𝑢 𝑖 ∗ 𝑘 10 𝑏 𝑖 ′2 −→ 𝑏 𝑖 , 𝑢𝑐 ∗ 𝑘 10 + ′2 ∶: 1 ∶ 1 <= 𝑖 <= 𝑘{1};

◦ Transaction:

/∗ 𝑟24 ∗/ 𝑑 𝑖 , 𝑒𝑛 𝑗 , 𝑓 𝑗, 𝑖 , 𝑣 𝑗 ∗ 𝑘{𝑖, 2} ′2 −→ 𝑢 𝑖 ∗ 𝑘{𝑖, 2} − ℎ 𝑖 , 𝑐 𝑗 , ′2 ∶: 1 : 1 ≤
𝑖 ≤ 𝑘 1 , 1 ≤ 𝑗 ≤ 𝑘{2}

◦ Capacity increase:
/∗ 𝑟34 ∗/ 𝑓 𝑗, 𝑖 , 𝑧 𝑖 ′2 −→ 𝑏 𝑖 ∗ 𝑘 12 + ′2 ∶: 1 ∶ 1 ≤ 𝑖 ≤ 𝑘 1 , 1 ≤ 𝑗 ≤ 𝑘{2}

Simplified trace

Membrane Computing Applications in Computational Economics

𝑅

1

2

0

1

2

+
STEP 1:

• Generic demand generation
• Supply creation
• Capacity cost payment

𝐶 𝑆 𝑅1

 𝑣𝑗 𝑢𝑖

𝐶 𝑆

 𝑢𝐶

1

0
0

STEP 2:
• Production of goods
• Order generation

2

 𝑅1

 𝑐𝑗 𝑏𝑖

 𝑔𝑖
 𝑔𝑖 𝑚𝑖

 𝑣𝑗 𝑢𝑖
 𝑐𝑗 𝑏𝑖

 𝑝 𝑞

 𝑔𝑖 𝑦𝑖 𝑅1

 𝑣𝑗

 𝑢𝑖
 𝑐𝑗 𝑏𝑖

𝐶 𝑆

𝑑ҧ 𝑎 𝑝 𝑞 𝑢𝐶

STEP 4:
Purchase transactions

 𝑢𝐶

1

0
0

STEP 3:
Generation of purchase

transaction authorizations

2
 𝑔𝑖 𝑦𝑖 𝑅1

 𝑢𝑖
 𝑐𝑗

𝐶 𝑆

𝑑ҧ 𝑎 𝑝 𝑞 𝑢𝐶

 𝑣𝑗 𝑑𝑖

 , ℎ𝑖

 𝑢𝐶

0

--

2
 𝑔𝑖 𝑦𝑖 𝑅1

 𝑢𝑖
 𝑐𝑗

𝐶 𝑆

𝑑ҧ 𝑎 𝑝 𝑞 𝑢𝐶

 𝑣𝑗

 𝑢𝐶

1

0

2
 𝑧𝑖

 𝑐𝑗

𝑑ҧ 𝑎

 𝑐𝑗 𝑑𝑖

STEP 5:
• Dividend payment
• Capacity depreciation
• Capacity increase decision

 𝑣𝑗 𝑢𝑖

 𝑔𝑖

𝐶 𝑆 𝑅1

0

STEP 1:
• Generic demand generation
• Supply creation
• Capacity cost payment

Simulation parameters
 Parameters: similar to Păun’s paper

Membrane Computing Applications in Computational Economics

Parameter Value Description

𝑘1 2 Total number of producers

𝑘2 3 Total number of retailers

𝑘3 59 Units of raw material inserted into the system by 𝑆– minimum value of range

𝑘4 62 Units of raw material inserted into the system by 𝑆– maximum value of range

𝑘5 59 Units of aggregate demand inserted into the system by 𝐶 – minimum value of range

𝑘6 62 Units of aggregate demand inserted into the system by 𝐶 – maximum value of range

𝑘7 11 Price fixed by 𝑆 for each unit of a

𝑘8 3 # failed purchases considered for the analysis of increasing capital stock – minimum value.

𝑘9 5 # failed purchases considered for the analysis of increasing capital stock – maximum value.

𝑘10 2 cost of capital stock per cycle

𝑘11 0.1 depreciation rate of capital stock

𝑘12 1 step of capacity increase

𝑘13 0.01 Dividend percentage

𝑘𝑖,1 (65,35) Initial production capacity of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1

𝑘𝑖,2 {13,13) Price fixed by producer 𝑖 for each unit of 𝑑𝑖. 1 ≤ 𝑖 ≤ 𝑘1

𝑘𝑗,3 (50,30,20) Initial capacity of retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2

𝑘𝑖,6 (15,15,15) Price fixed by retailer 𝑗 for each order of good 𝑗. 1 ≤ 𝑗 ≤ 𝑘2

MeCoSim definition

Membrane Computing Applications in Computational Economics

Parameter Value Description

𝑘1
<@r,1>

Index 1 = 1
Captures number of producers based on the number of rows in table Producer_input

𝑘2
<@r,8>

Index 2 = 2
Captures number of retailers based on the number of rows in table Retailer_input

𝑘3

<9,1-2,2>

Index 1 = [3..<@r,9>+2]

Units of raw material inserted into the system by 𝑆– minimum value of range

𝑘4 Units of raw material inserted into the system by 𝑆– maximum value of range

𝑘5 Units of aggregate demand inserted into the system by 𝐶 – minimum value of range

𝑘6 Units of aggregate demand inserted into the system by 𝐶 – maximum value of range

𝑘7 Price fixed by 𝑆 for each unit of a

𝑘8 # failed purchases considered for the analysis of increasing capital stock – minimum value.

𝑘9 # failed purchases considered for the analysis of increasing capital stock – maximum value.

𝑘10 Cost of capital stock per cycle

𝑘11 Depreciation rate of capital stock

𝑘12 Step of capacity increase

𝑘13 Dividend percentage

𝑘𝑖,1 <1,1,2+1>

Index 1 = [1..k{1}]

Index 2 = [1..2]

Initial production capacity of producer 𝑖. 1 ≤ 𝑖 ≤ 𝑘1

𝑘𝑖,2 Price fixed by producer 𝑖 for each unit of 𝑑𝑖. 1 ≤ 𝑖 ≤ 𝑘1

𝑘𝑗,3

<8,1,2>

Index 1 = [1..k{2}]

Index 2 = 3

Initial capacity of retailer 𝑗. 1 ≤ 𝑗 ≤ 𝑘2

𝑘𝑖,6

<8,1,3>

Index 1 = [1..k{2}]

Index 2 = 6

Price fixed by retailer 𝑗 for each order of good 𝑗. 1 ≤ 𝑗 ≤ 𝑘2

Simulation results – capacities

Membrane Computing Applications in Computational Economics

Producers’ capacities with:

• Depreciation rate = 0.1

• Deactivated capacity

increase mechanism.

Producers’ capacities with:

• Depreciation rate = 0.1

• Activated capacity

increase mechanism.

Simulation results – dividends

Membrane Computing Applications in Computational Economics

Generic consumer monetary

units:

• Deactivated dividend

payment.

Generic consumer monetary

units:

• Restored dividend

payment.

Simulation results – producer

Membrane Computing Applications in Computational Economics

• Initial distribution of

capacities: 65 + 35

• Raw material generation

rate [59,62]

• Raw material generation

rate [40,43]

System tries to reach an equilibrium point in function of parameters of S

Simulation results – retailer

Membrane Computing Applications in Computational Economics

• Initial distribution of

capacities: 50 + 30 + 20

• Generic demand

generation rate [59,62]

• Generic demand

generation rate [40,43]

System tries to reach an equilibrium point in function of parameters of C

CONCLUSIONS

 Initial model:

◦ We have been able to reproduce Păun’s results using:
 PDP systems.

 P – Lingua & MeCoSim framework.

 Inference engine DNDP4.

 Enhanced model:

◦ Initial model has been extended including several real world
economic processes.
 Cost of production factors, dividend payment.

 Capacity depreciation, capacity increase mechanisms.

 Removing external injection of monetary units.

◦ Model evolves autonomously around an equilibrium point
different from the initial conditions.

Membrane Computing Applications in Computational Economics

FURTHER DEVELOPMENTS

 Complete the enhanced model:

◦ Macroeconomics interest: behavior of system under
perturbation around equilibrium.

◦ Introduce mechanisms to adjust prices to some stimulus.

◦ Investigate if different patterns of randomness could be
generated easily.

 Future Case of Study:
◦ SDGE (Stochastic Dynamic General Equilibrium).
◦ Previous techniques can be utilized in this problem.

◦ Challenge: generate an emergent optimization behavior.

Membrane Computing Applications in Computational Economics

Gh. Păun, R. Păun: Membrane computing as a framework for modeling
economic processes. In Proc. SYNASC 05, Timisoara, Romania, IEEE Press,
2005, 11–18.

Păun Gh and Păun R. Membrane Computing and Economics. In Păun Gh,
Rozenberg G., Salomaa, eds. (2010) A. Handbook of Membrane Computing.
Oxford University Press, 2010, 632-644.

Pérez-Hurtado I, Valencia L, Pérez-Jiménez MJ, Colomer MA, Riscos A (2010)
MeCoSim: A general purpose software tool for simulating biological
phenomena by means of P Systems. In: K Li, Z Tang, R Li, AK Nagar, R
Thamburaj (eds.) Proceedings 2010 IEEE Fifth International Conference on Bio-
inspired Computing: Theories and Applications: 637–643. Vol 1. Changsha:
IEEE Press

Díaz D, Pérez-Hurtado I, Pérez-Jiménez MJ, Riscos A (2009) A P-Lingua
programming environment for Membrane Computing. LNCS 5391: 187–203

References

Membrane Computing Applications in Computational Economics

