Sparse-matrix
representation of SNP
systems for GPUs

15" Brainstorming Week on Membrane Computing, 2017, Sevilla, Spain

Miguel Angel Martinez-del-Amor*
David Orellana-Martin*
Francis G. Cabarle®
Henry N. Adorna’

Mario J. Pérez-Jiménez*

1 Research Group on Natural Computing. University of Sevilla, Spain
2 Dept of Computer Science, University of the Philippines Diliman, Philippines



Outline

- Motivation
+ Sparse matrices

- Proposals
- SNP systems
- SNP systems with division
- SNP systems with buddy

- SNP systems with plasticity



Motivation

- Transition of a SNP by matrix representation:

- Degree m, with n rules

Configuration vector: N\@/
size m % Fullof O's
v T
Spiking vector: size n Transition matrix: size m*n




SpMV: Sparse Matrix Vector
operations

- Reduce size of matrix representation

- Save memory
- Save extra operations

« Optimized for GPUs.

- Recall that threads in a GPU should:

- make coalesced access to mem. (contiguous data)
- be synchronized (execute same instructions)

- Formats: CSR and ELL



CSR format

3010
0241
00O0O
1

1
A
0
5

21

Row pointers:

Non-zero val; 3 1 2 4 1 -2

Columns: 0 2 1 2 3 0

Worth: #non-zero val < #zero val * 2 + #rows



ELL format

3010
0241
O0O0O
2151
Column Value

Largest amount
Non-zero values in a row

_/
Worth: length largest row * #rows * 2 < #rows*#columns



|deas

- Take advantage of ELL format
- For each row (now column), define max size (2)
- If we can bound Z, there Is room for new values

Sparse transition
matrix:

tp +tp +p P
TP +tp P P

E/a¢ - aPf

tp +p

Spiking vector:

: L \ i




Optimizations

- Access to spiking vector and transition matrix is not
coalesced.

- Split transition matrix: (4,2) € Syn

Synapses:

Ruleindex: 0 3 5 6 7

Rule info:




SNP with budding

1) Copy columnito k
_ _ [E]|_’[]]/[]k
2) Delete column i and write k

=)

Optimization: swap indexes i and k, so the new column is for i and contains only k



SNP with division

1) Copy columnitokandi - |
2) Add |, k at the end of (t,1)

Problem: what if the column is “full” already?

[El - L[]




SNP with plasticity

- Recall:

Plasticity rule: F/a® — ak(i, N), where E' is a regular expression over O,
c>l,ae{+ — +,FhH E>1,and N C{1,...,m}—{i};

o=+ o=-

Problems: “holes” in columns, need to compact or to “refill”



Conclusion

- Plasticity seems to be a better candidate for a
dynamic-network SNP on the GPU.

- It is better to have a fix number of neurons and
change the synapses, rather than having to create
new neurons and synapses.

- Budding can be made also in an efficient way,
and columns are never exceeded.

- Next step: implement the ideas and test with
GPUs and examples from literature.



	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12

