

Sparse-matrix
representation of SNP

systems for GPUs

15th Brainstorming Week on Membrane Computing, 2017, Sevilla, Spain

Miguel Ángel Martínez-del-Amor1

David Orellana-Martín1

Francis G. Cabarle2

Henry N. Adorna2

Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing. University of Sevilla, Spain
2 Dept of Computer Science, University of the Philippines Diliman, Philippines

Outline

● Motivation
● Sparse matrices
● Proposals

– SNP systems

– SNP systems with division

– SNP systems with buddy

– SNP systems with plasticity

Motivation

● Transition of a SNP by matrix representation:
– Degree m, with n rules

Ct+1 = Ct + St*M∏

Spiking vector: size n Transition matrix: size m*n

Full of 0’s
Configuration vector:
size m

SpMV: Sparse Matrix Vector
operations

● Reduce size of matrix representation
– Save memory
– Save extra operations

● Optimized for GPUs.
● Recall that threads in a GPU should:

– make coalesced access to mem. (contiguous data)
– be synchronized (execute same instructions)

● Formats: CSR and ELL

CSR format

3 0 1 0
0 2 4 1
0 0 0 0
-2 1 5 1

0 2 5 5

3 1 2 4 1 -2 1 5 1

0 2 1 2 3 0 1 2 3

Row pointers:

Non-zero val:

Columns:

Worth: #non-zero val < #zero val * 2 + #rows

ELL format

3 0 1 0
0 2 4 1
0 0 0 0
-2 1 5 1

(0,3) (1,2) X (0,-2)

(2,1) (2,4) X (1,1)

X (3,1) X (2,5)

X X X (3,1)

 Largest amount
 Non-zero values in a row

Column Value

Worth: length largest row * #rows * 2 < #rows*#columns

Ideas

● Take advantage of ELL format

– For each row (now column), define max size (Z)

– If we can bound Z, there is room for new values

-c -c

+p

+p

+p

-c

+p

+p

+p

-c

+p

+p

-c

+p

+p

-c

+p

+p

+p

+p

-c

+p

+p

+p

+p

+p

+p

-c

+p

-c

+p

σ
0

σ
1

σ
2

σ
3

σ
4

Sparse transition
matrix:

1 0 0 0 1 1 1 0 1

Spiking vector:

E/ac → ap

Optimizations

● Access to spiking vector and transition matrix is not
coalesced.

● Split transition matrix:

-c

0

-c

+p

-c

+p

-c

+p

-c

+p

-c

+p

-c

+p

-c

+p

-c

+p
Rule info:

0 3 5 6 7Rule index:

σ
0

σ
1

σ
2

σ
3

σ
4

σ
0

σ
1

σ
2

σ
3

σ
4

2Synapses:

(4,2) є Syn

 Z

SNP with budding

1) Copy column i to k

2) Delete column i and write k

y

i

x

i

k

k

x

y

Optimization: swap indexes i and k, so the new column is for i and contains only k

[E]
i
 → []

j
 / []

k

SNP with division

1) Copy column i to k and i → j

2) Add j, k at the end of (t,i)
i → j k

k

k

Problem: what if the column is “full” already?

j

[E]
i
 → []

j
 || []

k

SNP with plasticity

α=+

l
1

α=-

Problems: “holes” in columns, need to compact or to “refill”

● Recall:

l
2

l
3

k

k

Conclusion

● Plasticity seems to be a better candidate for a
dynamic-network SNP on the GPU.
– It is better to have a fix number of neurons and

change the synapses, rather than having to create
new neurons and synapses.

● Budding can be made also in an efficient way,
and columns are never exceeded.

● Next step: implement the ideas and test with
GPUs and examples from literature.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12

