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Some complexity classes beyond NP and co-NP

DP: class of “differences” of any two languages in NP (Papadimitriou and Yannakakis, 1984).

∗ DP = {L | ∃L1, L2(L1 ∈ NP ∧ L2 ∈ co−NP ∧ L = L1 ∩ L2}.
∗ NP ∪ co−NP ⊆ DP.

∗ The SAT-UNSAT problem.

Remark: If X is an NP-complete problem such that X ∈ PMCR (R is a class of recognizer membrane systems

stable under product family), then DP ⊆ PMCR.

PP: the majority of possible solutions associated with each instance is yes (Gill, 1977).

∗ DP ⊆ PP and PH ⊆ PPP.

∗ The MAJORITY-SAT problem.

#P: counting problems associated with polynomially balanced polynomial-time
decidable relations (Valiant, 1979).

∗ PP ≺ #P ⊆ PSPACE and and PH ⊆ P#PP.

∗ The #SAT problem.
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Basic polarizationless P systems with active membranes

Π = (Γ,H, µ,M1, . . . ,Mq,R, iout) of degree q ≥ 1:

∗ Γ is a finite alphabet whose elements are called objects;

∗ H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels;

∗ µ is a labelled rooted tree consisting of q nodes injectively labeled by elements of H;

∗ M1, . . . ,Mq are multisets over Γ;

∗ R is a finite set of rules, of the following forms:

(a0) [ a→ u ]h (object evolution rules).

(b0) a [ ]h → [ b ]h (send–in communication rules).

(c0) [ a ]h → b [ ]h (send–out communication rules).

(d0) [ a ]h → b (dissolution rules).

∗ iout ∈ H ∪ {env} (if iout ∈ H then iout is the label of a leaf of µ).

The class NAM0.

It is well known that PMCNAM0 = P.
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Division rules and separation rules

Mechanisms to produce an exponential workspace in linear time:

• Cell division: basic proces in the cell life cycle producing two or more cells
from one cell (its contents is replicated between the new membranes).

? Division rules for elementary membranes: [ a ]h → [ b ]h [ c ]h

? Division rules for non–elementary membranes: [ [ ]h1
[ ]h2

]h0
→ [ [ ]h1

]h0
[ [ ]h2

]h0

The class DAM0(±e,±c,±d,±n).

• Membrane fission: procces by which a biological membrane is split into
two new ones (its contents is distributed between the new membranes).

? Separation rules for elementary membranes: [ a ]h → [ Γ0 ]h [ Γ1 ]h
({Γ0, Γ1} is a prefixed partition of Γ)

? Separation rules for non–elementary membranes: [ [ ]h0
[ ]h1

]h → [ Γ0 [ ]h0
]h [ Γ1 [ ]h1

]h
(h0 ∈ H0 and h1 ∈ H1, being {H0,H1} a prefixed partition of H and {Γ0, Γ1} a prefixed
partition of Γ)

The class SAM0(±e,±c,±d,±n).
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Efficiency of DAM0(+e, +c, +d, +n)

Theorem: Subset-Sum ∈ PMCDAM0(+e,+c,+d,+n) (2005).

Corollary: DP ⊆ PMCDAM0(+e,+c,+d,+n).

Theorem: QSAT ∈ PMCDAM0(+e,+c,+d,+n) (2005).

Corollary: PSPACE ⊆ PMCDAM0(+e,+c,+d,+n).

Are necessary division rules for non-elementary membranes?
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Păun’s conjecture

At the beginning of 2005, Gh. Păun wrote (problem F from []1):

My favorite question (related to complexity aspects in P systems with active

membranes and with electrical charges) is that about the number of polarizations.

Can the polarizations be completely avoided? The feeling is that this is not

possible – and such a result would be rather sound: passing from no polarization

to two polarizations amounts to passing from non–efficiency to efficiency.

This so–called Păun’s conjecture can be formally formulated as follows:

PMCDAM0(+e,+c,+d,−n) = P

An affirmative answer: the ability to create an exponential amount of workspace in polynomial time, is not enough
in order to solve computationally hard problems efficiently.

A negative answer: provide a borderline between tractability and intractability (assuming that P 6= NP).

1
Gh. Păun. Further twenty six open problems in membrane computing. In M.A. Gutiérrez et al. Third

Brainstorming Week on Membrane Computing, Report RGNC 01/2005, Fénix Editora, Sevilla, 2005, pp. 249–262.
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Gh. Păun. Further twenty six open problems in membrane computing. In M.A. Gutiérrez et al. Third

Brainstorming Week on Membrane Computing, Report RGNC 01/2005, Fénix Editora, Sevilla, 2005, pp. 249–262.
6 / 17
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Partial solutions to Păun’s conjecture

A partial affirmative answer.

Theorem: PMCDAM0(+e,+c,−d,+n) = P (2005).

A partial negative answer.

Theorem: Subset-Sum ∈ PMCDAM0(+e,+c,+d,+n) (2005).

What syntactical ingredients are enough to solve NP-complete problems in an
efficient way, by using the frameworks DAM0(−d,−n) or SAM0(−d,−n)?

Dissolution: An apparently innocent rule.
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Minimal cooperation in object evolution rules

? Minimal cooperation (mc):

[ u → v ]h, for h ∈ H and u, v ∈ Mf (Γ) such that 1 ≤ |u| ≤ 2

? Bounded minimal cooperation (bmc):

[ u → v ]h, for h ∈ H and u, v ∈ Mf (Γ) such that 1 ≤ |v | ≤ |u| ≤ 2

? Primary minimal cooperation (pmc):

[ u → v ]h, for h ∈ H and u, v ∈ Mf (Γ) such that 1 ≤ |u|, |v | ≤ 2

? Minimal cooperation and minimal production (mcmp):

[ u → v ]h, for h ∈ H and u, v ∈ Mf (Γ) such that 1 ≤ |u| ≤ 2 and |v | = 1

mc =⇒ pmc =⇒ bmc =⇒ mcmp

The class DAM0(α,+c,−d,±n), where α ∈ {mc, pmc, bmc,mcmp}.
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Bounded minimal cooperation

Object evolution rules: [ a −→ b ]h ; [ a b −→ c ]h ; [ a b −→ c d ]h

Theorem: SAT ∈ PMCDAM0(bmc,+c,−d,−n).

Corollary: DP ⊆ PMCDAM0(bmc,+c,−d,−n).

Theorem: PMCSAM0(bmc,+c,−d,+n) = P.

? New frontier of the efficiency in the framework AM0(bmc,+c,−d ,−n):
separation versus division.

? New frontier of the efficiency in the framework DAM0(∗,+c,−d ,−n):
non-cooperation in object evolution rules versus bmc in object evolution rules.

9 / 17



Bounded minimal cooperation

Object evolution rules: [ a −→ b ]h ; [ a b −→ c ]h ; [ a b −→ c d ]h

Theorem: SAT ∈ PMCDAM0(bmc,+c,−d,−n).

Corollary: DP ⊆ PMCDAM0(bmc,+c,−d,−n).

Theorem: PMCSAM0(bmc,+c,−d,+n) = P.

? New frontier of the efficiency in the framework AM0(bmc,+c,−d ,−n):
separation versus division.

? New frontier of the efficiency in the framework DAM0(∗,+c,−d ,−n):
non-cooperation in object evolution rules versus bmc in object evolution rules.

9 / 17



Bounded minimal cooperation

Object evolution rules: [ a −→ b ]h ; [ a b −→ c ]h ; [ a b −→ c d ]h

Theorem: SAT ∈ PMCDAM0(bmc,+c,−d,−n).

Corollary: DP ⊆ PMCDAM0(bmc,+c,−d,−n).

Theorem: PMCSAM0(bmc,+c,−d,+n) = P.

? New frontier of the efficiency in the framework AM0(bmc,+c,−d ,−n):
separation versus division.

? New frontier of the efficiency in the framework DAM0(∗,+c,−d ,−n):
non-cooperation in object evolution rules versus bmc in object evolution rules.

9 / 17



Bounded minimal cooperation

Object evolution rules: [ a −→ b ]h ; [ a b −→ c ]h ; [ a b −→ c d ]h

Theorem: SAT ∈ PMCDAM0(bmc,+c,−d,−n).

Corollary: DP ⊆ PMCDAM0(bmc,+c,−d,−n).

Theorem: PMCSAM0(bmc,+c,−d,+n) = P.

? New frontier of the efficiency in the framework AM0(bmc,+c,−d ,−n):
separation versus division.

? New frontier of the efficiency in the framework DAM0(∗,+c,−d ,−n):
non-cooperation in object evolution rules versus bmc in object evolution rules.

9 / 17



Primary minimal cooperation

Object evolution rules: [ a −→ b ]h ; [ a −→ b c ]h ; [ a b −→ c ]h ; [ a b −→ c d ]h
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Corollary: DP ⊆ PMCDAM0(pmc,+c,−d,−n) ∩ PMCSAM0(pmc,+c,−d,−n).

? New frontier of the efficiency in the framework SAM0(mc,+c,−d ,−n): bmc
versus pmc.

? New frontier of the efficiency in the framework SAM0(∗,+c,−d ,−n):
non-cooperation in object evolution rules versus pmc in object evolution rules.
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Minimal cooperation and minimal production

Object evolution rules: [ a −→ b ]h ; [ a b −→ c ]h

Theorem: SAT ∈ PMCDAM0(mcmp,+c,−d,−n).

Corollary: DP ⊆ PMCDAM0(mcmp,+c,−d,−n).

? New frontier of the efficiency in the framework DAM0(∗,+c,−d ,−n):
non-cooperation in object evolution rules versus mcmp in object evolution rules.

Theorem: MAJORITY-SAT ∈ PMCDAM0(mcmp,+c,−d,−n).

Corollary: PP ⊆ PMCDAM0(mcmp,+c,−d,−n).

What about separation rules instead of division rules?

Theorem: PMCSAM0(mcmp,+c,−d,+n) = P.
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Counting membrane systems

Decision problems: abstract problem that has a yes or no answer.

• Recognizer membrane systems: The classes DAM0 and SAM0.

Counting problems: how many possible solutions exist associated with each instance.

• Counting membrane systems: inspired from recognizer membrane systems but the boolean answer of these
systems is replaced by an answer encoded by a natural number expressed in a binary notation.

• The classes DAM0
C and SAM0

C .

Theorem: #SAT ∈ PMCDAM0
C(mcmp,+c,−d,−n).

Corollary: #P ⊆ PMCDAM0
C(mcmp,+c,−d,−n).

What about the complexity class PMCSAM0
C(mcmp,+c,−d,−n)?
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New results (IV)

Theorem: PMCSAM0(mcmp,+c,−d,+n) = P.

? New frontier of the efficiency in the framework AM0(mcmp,+c,−d ,−n):
separation versus division.

? New frontier of the efficiency in the framework SAM0(mc,+c,−d ,−n):
mcmp versus pmc.
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Minimal cooperation and minimal production in communication rules

? mcmp in send-in and send-out communication rules (mcmpin−out):

a [ ]h −→ [ b ]h

a b [ ]h −→ [ c ]h

[ a ]h −→ b [ ]h

[ a b ]h −→ c [ ]h

 for h ∈ H and a, b, c ∈ Γ

? mcmp in send-in communication rules (mcmpin):

a [ ]h −→ [ b ]h

a b [ ]h −→ [ c ]h

}
for h ∈ H and a, b, c ∈ Γ

? mcmp in send-out communication rules (mcmpout):

[ a ]h −→ b [ ]h

[ a b ]h −→ c [ ]h

}
for h ∈ H and a, b, c ∈ Γ

The class DAM0(+e, β,±d,±n), β ∈ {mcmpin−out ,mcmpin,mcmpout}.
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New results

mcmp in communication rules (both directions) :

Theorem: SAT ∈ PMCDAM0(+e,mcmpin−out,−d,+n).

Corollary: DP ⊆ PMC(+e,mcmpin−out,−d,+n).

Simple object evolution rules: [ a→ b ]h, for h ∈ H and a, b ∈ Γ

Theorem: SAT ∈ PMCDAM0(+es,mcmpin−out,−d,+n).

Corollary: DP ⊆ PMC(+es,mcmpin−out,−d,+n).

Direction in communication rules ... doesn’t matter!!!

Theorem: SAT ∈ PMCDAM0(+es,mcmpin,−d,+n) ∩ PMCDAM0(+es,mcmpout,−d,+n).

Corollary: DP ⊆ PMC(+es,mcmpin,−d,+n) ∩ PMCDAM0(+es,mcmpout,−d,+n).

Are necessary division rules for non-elementary membranes?
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