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Extended Spiking Neural P System (ESNPS) 

We consider several variants of extended spiking
neural P systems (ESNPSs) allowing for spikes with
different colors (ECSNPSs).
Instead of choosing the rules in the neurons based on 
the current contents being in a regular set, we also 
consider the way of choosing the rule to be applied in 
each neuron to consume the minimal energy. This 
choice can be accomplished by assigning energy values
- to each rule or
- directly to the colored spikes. 



ECSNPS with Request (ECSNPRS)

We now also consider the variants of ECSNPSs with
requesting spikes instead of sending spikes, i.e., 
ECSNPS with request (ECSNPRS).
In order to allow these systems to increase the
number of spikes in the system, we use rules
requesting spikes from the environment where all 
spikes are assumed to be available in an unbounded
number.



Extended Spiking Neural P System (ESNPS) 

An extended spiking neural P system (of degree m ≥ 1) 
(an ESNPS for short) is a construct Π = (N,I,R) where
• N is the set of cells (or neurons); uniquely identified

by a number between 1 and m;
• I describes the initial configuration by assigning an 

initial value (of spikes); 
• R is a finite set of spiking rules of the form i:E/ak

→P, i∈{1,...,m, E is the checking set, a regular set
over a, k ∈ N is the “number of spikes” (the energy) 
consumed by this rule, and P is a (possibly empty) 
set of productions of the form (n,wn), n ∈{1,...,m},   
wn ∈{a}* is the weight of the energy sent along the
axon from neuron i to neuron n.



Extended Spiking Neural P System (ESNPS) 

A configuration of the ESNPS system Π is described by
the actual number of spikes in each neuron. 
A transition from one configuration to another one
works as follows: for each neuron i, i∈{1,...,m}, we
non-deterministically choose an applicable rule i:E/ak

→P, i.e., the number of spikes in neuron i is in the
regular set E; the application of this rule reduces the
number of spikes in neuron i by k and adds wn spikes
to each neuron n specified in P. 
The computation of Π halts if no spiking rule can be 
applied any more. 



ESNPS with Colored Spikes (ECSNPS) 

We may extend this model of ESNPSs by allowing more
than one variant of spikes, i.e., we may use colored
spikes a, b, etc.; the set of these colored spikes is
denoted by U. 
In that case, the spiking rules then are of the form 
i:E/u →P where E is a regular multiset over the finite 
set of colored spikes U, u is a finite multiset over U, 
and P is a (possibly empty) set of productions of the
form (n,wn) where n ∈{1,...,m} (thus specifying the
target neuron) and wn is a finite multiset of colored
spikes over U sent along the axon from neuron i to
neuron n.



ECSNPS with Energy Control

We consider two variants: the first variant assigns fixed
integer values of energy to each colored spike in the
system, i.e., instead of a colored spike a∈U we consider
the pair [a,f(a)] with f(a)∈Z. We extend f in the natural
way to multisets over U. 
The energy balance of a spiking rule i:E/u →P then is
z = f (v) − f (u) where v is the union of all multisets wl in P. 
Such variants of extended spiking neural P systems will be
called symbol energy-controlled ECSNPSs. 
In the second variant, the energy is directly assigned to
the rules only, and we write the spiking rule as
i:E/u →P <z> where z is the assigned integer energy value
(rule energy-controlled ECSNPSs). 



ECSNPS with Energy Control

In the case of energy-controlled ESNP systems we now
will only consider spiking rules i:E/u →P with E being the
set of all multisets over U, i.e., we can omit E and simply
write the spiking rule as i:u →P and i:u →P <z>, 
respectively. 
In order to control the application of rules, we will 
impose the condition that the resulting energy balance of
the applied spiking rules must be minimal.



Computational Completeness Results

Theorem 1. The computations of any register machine 
can be simulated by an ECSNPS in only one node.
Proof. Consider an arbitrary d-register machine M = 
(d,B,l0,lh,P). For each register i, 1≤i≤d, of M, we use a 
different colored spike ai. An additional colored spike a0

is used to encode the label p in B={1,...,m}, i.e., p is 
encoded by a0

p. We here denote U:={ai :1≤i≤d}.
ECSNPS with only one neuron Π = ({1},I,R):
An increment instruction p:(ADD(r),q,s) then can be
simulated by the two spiking rules
1: {a0

p}Uo/ a0
p → (1,ar a0

q) and
1: {a0

p}Uo/ a0
p → (1,ar a0

s).



Computational Completeness Results

A zero-test and decrement instruction p:(SUB(r),q,s) 
then can be simulated by the two spiking rules
1: {a0

p}(U\{ar})
o/ a0

p →(1,a0
s) and

1: {a0
p ar}U

o/ a0
p ar →(1,a0

q).

Assuming that the halt instruction has label m, we 
finally get the simulation of the halt instruction as 
1: {a0

m}Uo/ a0
m → λ.

After the application of this rule, no spike a0 is present
any more, hence, no spiking rule can be applied, i.e., 
the ESNP system Π halts.



Computational Completeness Results

Theorem 2. The computations of any register machine 
can be simulated by an ECSNPS with symbol or rule 
energy control in only one node.

Proof.
Again we consider an arbitrary d-register machine
M = (d,B,l0,lh,P). For each register i, 1≤i≤d, of M, we use a 
different colored spike ai with 1 being the energy 
assigned to it. An additional colored spike a0 with energy 
2 is used to encode the label p in B={1,...,m}, i.e., p is 
encoded by a0

p. Moreover, we use a special energy spike 
e with energy -1 to balance the spiking rules.



Computational Completeness Results

symbol energy-controlled ECSNPS Π = ({1},I,R):
p:(ADD(r),q,s) simulated by
1: [a0,2]p → [ar,1] [a0,2]q [e,-1]2q+1 < -2p >  and
1: [a0,2]p → [ar,1] [a0,2]s [e,-1]2s+1 < -2p > .

p:(SUB(r),q,s) simulated by
1: [a0,2]p → [a0,2]s [e,-1]2s < -2p >  and
1: [a0,2]p [ar,1]  → [a0,2]q [e,-1]2s < -2p-1 > .

Halt instruction simulated  by the spiking rule
1: [a0,2]m → λ < -2m > .

Elimination of the “garbage” of spikes e by
1: [e,-1] → λ < 1 > .



ECSNPS with Request (ECSNPRS)

In an ECSNPS with request (ECSNPRS) spikes are
requested from other neurons instead of being sent.
The spiking rules then are of the form i:E/u P where
E is the regular checking set over the set of colored
spikes U, u is a finite multiset over U eliminated by this
rule, and P is a (possibly empty) set of requesting
productions of the form (n,wn), n ∈{0,1,...,m}, wn is a 
finite multiset of colored spikes over U requested
along the axon from neuron n to neuron i.
To increase the number of spikes in the system, we
use rules requesting spikes from the environment
neuron n=0 where all spikes are assumed to be
available in an unbounded number.



Computational Completeness for ECSNPRS

Theorem 3. The computations of any register machine 
can be simulated by an ECSNPRS in only one actor neuron.
Proof. Consider an arbitrary d-register machine M = 
(d,B,l0,lh,P). For each register i, 1≤i≤d, of M, we use a 
different colored spike ai. An additional colored spike a0 is 
used to encode the label p in B={1,...,m}, i.e., p is 
encoded by a0

p. We here denote U:={ai :1≤i≤d}.
ECSNPS with only one actor neuron Π = ({1},I,R):
An increment instruction p:(ADD(r),q,s) then can be
simulated by the two spiking rules
1: {a0

p}Uo/ a0
p
 (0,ar a0

q) and
1: {a0

p}Uo/ a0
p
 (0,ar a0

s).



Computational Completeness for ECSNPRS

A zero-test and decrement instruction p:(SUB(r),q,s) then
can be simulated by the two spiking rules
1: {a0

p}(U\{ar})
o/ a0

p
 (0,a0

s) and
1: {a0

p ar}U
o/ a0

p ar (0,a0
q).

Assuming that the halt instruction has label m, we finally 
get the simulation of the halt instruction as 
1: {a0

m}Uo/ a0
m
 λ.

After the application of this rule, no spike a0 is present
any more, hence, no spiking rule can be applied, i.e., the
ESNP system Π halts.



The Rudi-Gheorghe Challenge of 2017:

Prove that one coloured spike is not enough

with our definition for an ECSNPRS to

obtain computational completeness.

REWARD: 

(65 – age) Euros

Co-authorship

Condition to be fulfilled for obtaining the Reward:

Proof approved by Rudi and Gheorghe!


