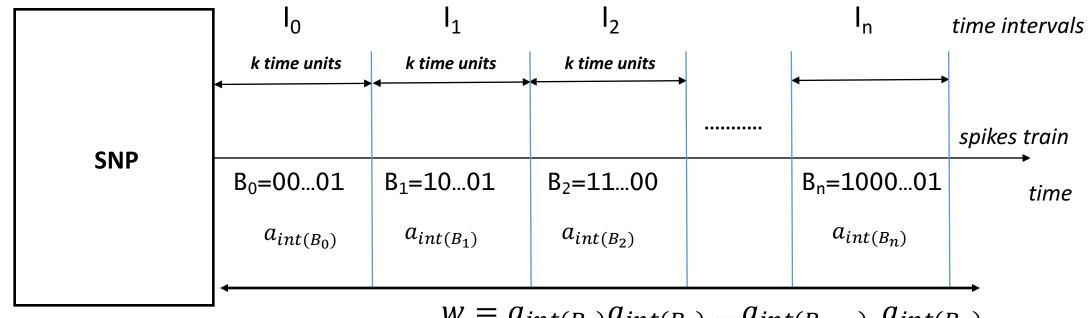
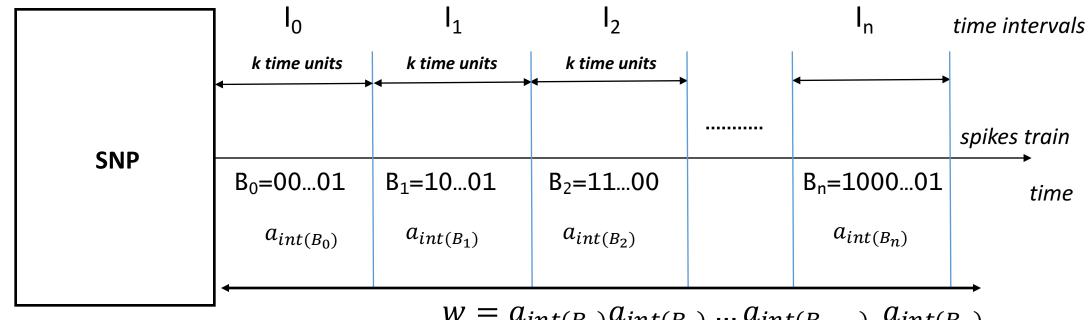
Families of Languages Associated with SN P Systems

Gh. Paun José M. Sempere



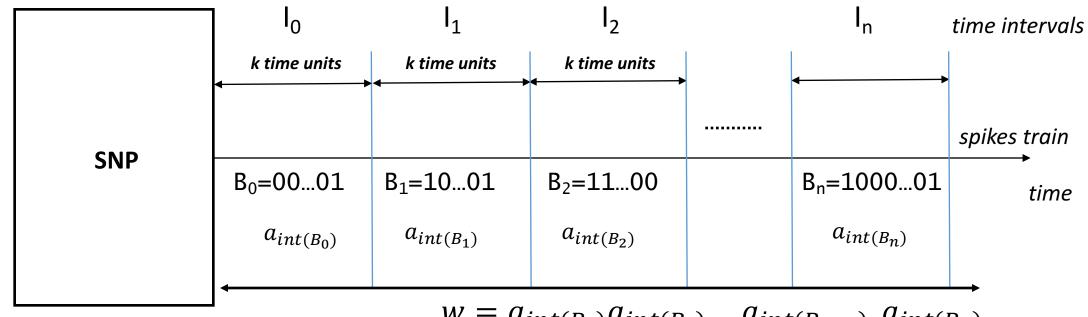
 $w = a_{int(B_0)}a_{int(B_1)} \dots a_{int(B_{n-1})} a_{int(B_n)}$

$$\Sigma_k = \{a_0, a_1, \dots, a_{2^k - 1}\}$$



 $w = a_{int(B_0)}a_{int(B_1)} \dots a_{int(B_{n-1})} a_{int(B_n)}$

 $\Sigma_{k} = \{a_{0}, a_{1}, \dots, a_{2^{k}-1}\} \qquad \qquad \varphi_{k}: \{0, 1\}^{k} \to V_{k}$

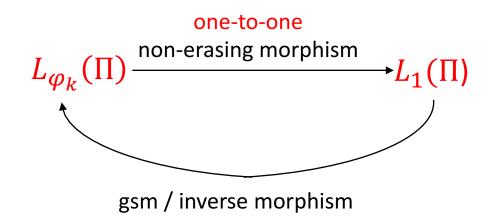


 $w = a_{int(B_0)}a_{int(B_1)} \dots a_{int(B_{n-1})} a_{int(B_n)}$

$$\Sigma_k = \{a_0, a_1, \dots, a_{2^k - 1}\}$$

 $\varphi_k: \{0, 1\}^k \to V_k$ $k^{w=w0^t}$ $t = \min\{n \ge 0 : |w0^n| \mod k = 0\}$ Let Π be an SN P system and φ_k an enconding. Then

$$L_{\varphi_k}(\Pi) = \{\varphi_k(k^w) : w \in L_1(\Pi)\}$$



Proposition 1: If $L_1(\Pi) \in FL$, where FL is a family of languages closed under gsm mappings or under inverse morphism, then $L_{\varphi_k}(\Pi) \in FL$, for all $k \ge 1$. If FL is closed under non-erasing morphism and $L_{\varphi_k}(\Pi) \in FL$, then also $L_1(\Pi) \in FL$.

(i.e. FL is REG/LIN/CF)

Let Π be an SN P system and φ_k an enconding. Then

$$F(\Pi) = \{L_{\varphi_k}(\Pi) : k \ge 1\}$$

 $F(\Pi)$ contains only languages of the same language class (for the one-to-one case)

If $L_1(\Pi)$ is finite then so is $L_{\varphi_k}(\Pi)$ and $F(\Pi)$ is finite (up to a renaming of symbols of encodings alphabets)

If $L_1(\Pi)$ is infinite then so is $L_{\varphi_k}(\Pi)$ and $F(\Pi)$ can be infinite (no matters the initial language) (CONJECTURE)

Let Π be an SN P system and φ_k an (not one-to-one) enconding.

$$L_{\varphi_k}(\Pi) = \{\varphi_k(k^w) : w \in L_1(\Pi)\}$$

Proposition 1 does not hold

 $L_1(\Pi) = \{1^n 0 1^n : n \ge 1\}$ (NON REGULAR)

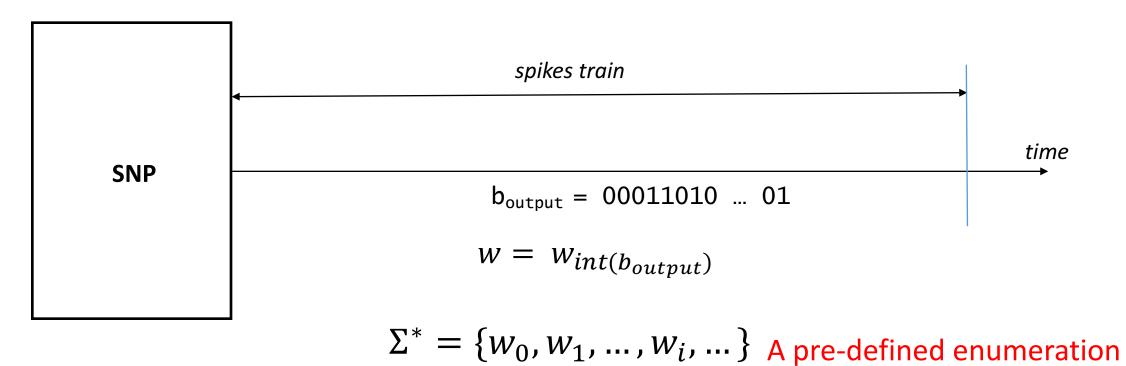
$$\varphi_k(w) = a \text{ if } |w|_0 \le 1 \qquad \qquad L_{\varphi_k}(\Pi) = a^+ \cup a^*b \quad k \ge 4$$

$$\varphi_k(w) = b \text{ if } |w|_0 \ge 2 \qquad \qquad L_{\varphi_k}(\Pi) = a^+ \cup a^+b \quad k = 2,3$$
(REGULAR)

$F(\Pi)$ characterizations ?

The infinite case

Let Π be an SN P system



 $\Sigma = \{a_0, a_1, \dots, a_p\}$

The infinite case

Let Π be an SN P system

 $L_{\infty}(\Pi) = \{x_{int(w)} : w \in L_1(\Pi)\}$

The encoding does not preserve the language class:

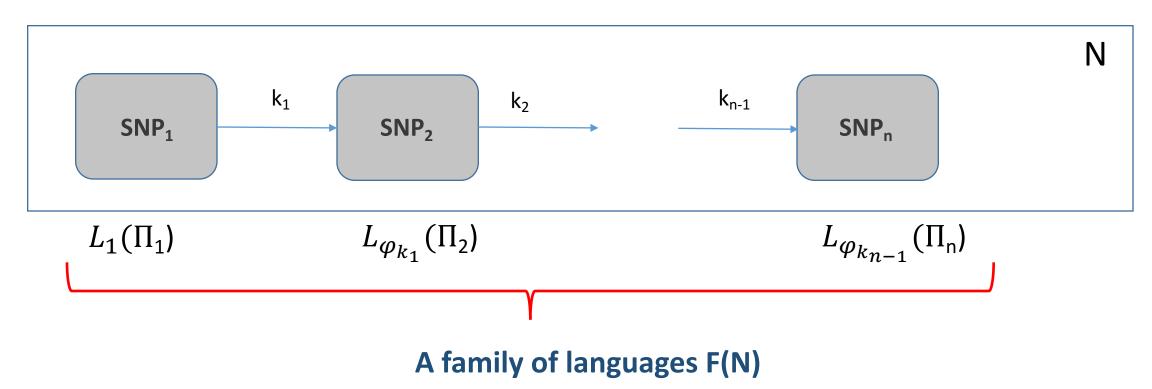
Let $L_1 = \{0^n 1^n : n \ge 0\}$ and $L_2 = \Sigma^* - L_2$ be ordered in lexicographic order.

We can apply the following order for Σ^* : for the odd positions we apply L_2 and for the even positions we apply L_1

We take $L_1(\Pi) = \{(10)^n : n \ge 0\}$ (regular) and $L_{\infty}(\Pi)$ be an infinite subset of L_1 (hence it is not regular)

 $L_{\infty}(\Pi)$ characterizations ??

The network case



- What is the characterizations of F(N)?
- Does the network topology influence the characterizations ?
- $L_{\varphi_{k_{n-1}}}(\Pi_n)$ can be considered as the result of iterated transductions. How many SN P systems are needed to produce every recursively enumerable language ? (A descriptive complexity measure: number of SN P systems, neurons, connections, etc.)