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Summary. We introduce several variants of input-driven tissue P automata where the
rules to be applied only depend on the input symbol. Both strings and multisets are
considered as input objects; the strings are either read from an input tape or defined
by the sequence of symbols taken in, and the multisets are given in an input cell at the
beginning of a computation, enclosed in a vesicle. Additional symbols generated during a
computation are stored in this vesicle, too. An input is accepted when the vesicle reaches a
final cell and it is empty. The computational power of some variants of input-driven tissue
P automata is illustrated by examples and compared with the power of the input-driven
variants of other automata as register machines and counter automata.

1 Introduction

In the basic model of membrane systems as introduced at the end of the last
century by Gheorghe Păun, e.g., see [9] and [30], the membranes are organized
in a hierarchical membrane structure (i.e., the connection structure between the
compartments/regions within the membranes being representable as a tree), and
the multisets of objects in the membrane regions evolve in a maximally parallel
way, with the resulting objects also being able to pass through the surrounding
membrane to the parent membrane region or to enter an inner membrane. Many
variants of membrane systems, for obvious reasons mostly called P systems, have
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been investigated during nearly two decades, most of them being computationally
complete, i.e., being able to simulate the computations of register machines. If an
arbitrary graph is used as the connection structure between the cells/membranes,
the systems are called tissue P systems, see [21].

Instead of multisets of plain symbols coming from a finite alphabet, P systems
quite often operate on more complex objects (e.g., strings, arrays), too. A com-
prehensive overview of different variants of (tissue) P systems and their expressive
power is given in the handbook which appeared in 2010, see [31]. For a short view
on the state of the art on the domain, we refer the reader to the P systems web-
site [34] as well as to the Bulletin series of the International Membrane Computing
Society [33].

The notion and concept of input-driven push-down automata goes back to
the seminal paper [22] as well as the papers [6] and [10] improving the complexity
measures shown in [22]. The main idea of input-driven push-down automata is that
the input letters uniquely determine whether the automaton pushes a symbol, pops
a symbol, or leaves the pushdown unchanged. Input-driven push-down automata
have been rediscovered at the beginning of this century under the name of visibly
pushdown automata, see [3] and [4]. Since then, variants of input-driven push-
down automata have gained growing interest, especially because closure properties
and decidable questions of the language classes defined by these devices turn out
to be similar to those of regular languages. Several new variants of input-driven
automata have been developed, for example, using stacks or queues, see [5], [19],
and [20]. For complexity issues of input-driven push-down automata, the reader is
referred to [24, 25, 26, 27].

The so-called point mutations, i.e., insertion, deletion, and substitution, which
mean inserting or deleting one symbol or replacing one symbol by another one in
a string or multiset are very simple biologically motivated operations. For exam-
ple, on strings graph-controlled insertion-deletion systems have been investigated
in [13], and P systems using these operations at the left or right end of string
objects were introduced in [16], where also a short history of using these point
mutations in formal language theory can be found.

The operations of insertion and deletion in multisets show a close relation
with the increment and decrement instructions in register machines. The power of
changing states in connection with the increment and decrement instructions then
can be mimicked by moving the whole multiset representing the configuration of a
register machine from one cell to another one in the corresponding tissue system
after the application of an insertion or deletion rule. Yet usually moving the whole
multiset of objects in a cell to another one, besides maximal parallelism, requires
target agreement between all applied rules, i.e., that all results are moved to the
same target cell, e.g., see [15].

A different approach has been introduced in [2]: in order to guarantee that the
whole multiset is moved even if only one point mutation is applied, the multiset
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is enclosed in a vesicle, and this vesicle is moved from one cell to another one
as a whole, no matter if a rule has been applied or not. Requiring that one rule
has to be applied in every derivation step, a characterization of the family of
sets of (vectors of) natural numbers defined by partially blind register machines,
which itself corresponds with the family of sets of (vectors of) natural numbers
obtained as number (Parikh) sets of string languages generated by graph-controlled
or matrix grammars without appearance checking, is obtained.

The idea of using vesicles of multisets has already been used in variants of P
systems using the operations drip and mate, corresponding with the operations
cut and paste well-known from the area of DNA computing, see [14]. Yet in that
case, always two vesicles (one of them possibly an axiom available in an unbounded
number) have to interact. In the model as introduced in [2] and also to be adapted
in this paper, the rules are always applied to the same vesicle. The point mutations,
i.e., insertion, deletion, and substitution, well-known from biology as operations
on DNA, have also widely been used in the variants of networks of evolutionary
processors (NEPs), which consist of cells (processors) each of them allowing for
specific operations on strings, and in each derivation step, after the application of a
rule, allow the resulting string to be sent to another cell provided specific conditions
(for example, random context output and input filters). A short overview on NEPs
is given in [2], too.

In this paper, we now introduce input-driven tissue P automata where the
rules to be applied only depend on the input symbol. Taking strings as input
objects, these are either read from an input tape or defined by the sequence of
symbols taken in, and as a kind of additional storage we use a multiset of different
symbols enclosed in a vesicle which moves from one cell of the tissue P system to
another one depending on the input symbol; the input symbol at the same time
also determines whether (one or more) symbols are added to the multiset in the
vesicle or removed from there. The given input is accepted if the whole input has
been read and the vesicle has reached a final cell and is empty at this moment.
When using multisets as input objects, these are enclosed in the vesicle in the
input cell at the beginning of a computation, which vesicle then will also carry
the additional symbols. The given input multiset is accepted if no input symbols
are present any more and the vesicle has reached a final cell and is empty at this
moment.

As rules operating on the multiset enclosed in the vesicle when read-
ing/consuming an input symbol we use insertion, deletion, and substitution of
multisets, applied in the sequential derivation mode. As restricted variants, we
consider systems without allowing substitution of multisets and systems only al-
lowing symbols to be inserted or deleted (or substituted) as it is common when
using point mutation rules.

Multiset automata have already been considered in [7], where models for finite
automata, linear bounded automata, and Turing machines working on multisets
are discussed. When dealing with multisets only, the tissue P automata considered
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in this paper can be seen as one of the variants of multiset pushdown automata as
investigated in [18], where no checking for the emptiness of the multiset memory
during the computation is possible. Various lemmas proved there then can imme-
diately be adapted for our model. Moreover, also the input-driven variants can be
defined in a similar manner, although input-driven multiset pushdown automata
have not yet been considered in that paper.

We should also like to mention that the control given by the underlying com-
munication structure of the tissue P system could also be interpreted as having a
P system with only one membrane but using states instead. For a discussion on
how to use and interpret features of (tissue) P systems as states we refer to [1],
where also an example only using the point mutation rules insertion and deletion
is given. Moreover, we will also consider another alternative model very common
in the P systems area, i.e., P systems with antiport and symport rules, which were
introduced in [29]; for an overview, we refer to [31], Chapter 5. One-membrane P
systems using antiport rules in a sequential manner and with specific restrictions
on the rules then are an adequate model for (input-driven) P automata, yet the
restrictions are less visible than in the model of input-driven tissue P automata.
On the other hand, when dealing with strings instead of multisets, the way how to
read or define the input string in P systems with antiport rules has already been
investigated thoroughly, e.g., see [8], [28], and [11] for an overview.

The rest of the paper now is structured as follows: In Section 2 we recall some
well-known definitions from formal language theory. The main definitions for the
model of (input-driven) tissue P automata as well as its variants to be considered
in this paper are given in Section 3, and there we also present the definition of the
alternative model of (input-driven) one-membrane P automata with (restricted)
antiport rules; moreover we also give some first examples and results. Further
illustrative examples and some more results, especially for input-driven tissue P
automata are exhibited in Section 4. As upper bound for the family of sets of
vectors of natural numbers accepted by input-driven tissue P automata we get the
family of sets of vectors of natural numbers generated by partially blind register
machines, and as upper bound for the family of sets of strings accepted by input-
driven tissue P automata we get the family of sets of strings accepted by partially
blind counter automata. A summary of the results obtained in this paper and an
outlook to future research are presented in Section 5.

2 Prerequisites

We start by recalling some basic notions of formal language theory. An alphabet is
a non-empty finite set. A finite sequence of symbols from an alphabet V is called
a string over V . The set of all strings over V is denoted by V ∗; the empty string
is denoted by λ; moreover, we define V + = V ∗ \ {λ}. The length of a string x is
denoted by |x|, and by |x|a we denote the number of occurrences of a letter a in a
string x.
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A multiset M with underlying set A is a pair (A, f) where f : A→ N is a map-
ping, with N denoting the set of natural numbers (non-negative integers). If M =
(A, f) is a multiset then its support is defined as supp(M) = {x ∈ A | f(x) > 0}. A
multiset is empty (respectively finite) if its support is the empty set (respectively
a finite set). If M = (A, f) is a finite multiset over A and supp(M) = {a1, . . . , ak},
then it can also be represented by the string a

f(a1)
1 . . . a

f(ak)
k over the alphabet

{a1, . . . , ak} (the corresponding vector (f(a1), . . . , f(ak)) of natural numbers is
called Parikh vector of the string af(a1)

1 . . . a
f(ak)
k ), and, moreover, all permuta-

tions of this string precisely identify the same multiset M (they have the same
Parikh vector). The set of all multisets over the alphabet V is denoted by V ◦.

The family of all recursively enumerable sets of strings is denoted by RE, the
corresponding family of recursively enumerable sets of Parikh vectors is denoted
by PsRE. For more details of formal language theory the reader is referred to the
monographs and handbooks in this area, such as [32].

2.1 Insertion, Deletion, and Substitution

For an alphabet V , let a→ b be a rewriting rule with a, b ∈ V ∪ {λ}, and ab 6= λ;
we call such a rule a substitution rule if both a and b are different from λ and we
also write S(a, b); such a rule is called a deletion rule if a 6= λ and b = λ, and it
is also written as D(a); a → b is called an insertion rule if a = λ and b 6= λ, and
we also write I(b). The sets of all insertion rules, deletion rules, and substitution
rules over an alphabet V are denoted by InsV , DelV , and SubV , respectively.
Whereas an insertion rule is always applicable, the applicability of a deletion and
a substitution rule depends on the presence of the symbol a. We remark that
insertion rules, deletion rules, and substitution rules can be applied to strings
as well as to multisets. Whereas in the string case, the position of the inserted,
deleted, and substituted symbol matters, in the case of a multiset this only means
incrementing the number of symbols b, decrementing the number of symbols a,
or decrementing the number of symbols a and at the same time incrementing the
number of symbols b.

These types of rules and the corresponding notations can be extended by al-
lowing more than one symbol on the left-hand and/or the right-hand side, i.e.,
a, b ∈ V ∗, and ab 6= λ. The corresponding sets of all extended insertion rules,
deletion rules, and substitution rules over an alphabet V are denoted by Ins∗V ,
Del∗V , and Sub

∗
V , respectively.

2.2 Register Machines

Register machines are well-known universal devices for computing (generating or
accepting) sets of vectors of natural numbers.

Definition 1. A register machine is a construct M = (m,B, I, h, P ) where

• m is the number of registers,
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• B is a set of labels bijectively labeling the instructions in the set P ,
• I ⊆ B is the set of initial labels, and
• h ∈ B is the final label.

The labeled instructions of M in P can be of the following forms:

• p : (ADD (r) ,K), with p ∈ B \ {lh}, K ⊆ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to one
of the instructions in K.

• p : (SUB (r) ,K, F ), with p ∈ B \ {lh}, K,F ⊆ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to one of the instructions in K, otherwise jump to
one of the instructions in F ( zero-test case).

• h : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each reg-
ister and by the value of the current label, which indicates the next instruction to
be executed.

In the accepting case, a computation starts with the input of a k-vector of
natural numbers in its first k registers and by executing one of the initial instruc-
tions of P (labeled with l ∈ I); it terminates with reaching the HALT -instruction.
Without loss of generality, we may assume all registers to be empty at the end of
the computation.

By L(RM) we denote the family of sets of vectors of natural numbers accepted
by register machines. It is folklore (e.g., see [23]) that PsRE = L(RM).

Partially blind register machines

In the case when a register machine cannot check whether a register is empty
we say that it is partially blind: the registers are increased and decreased by one
as usual, but if the machine tries to subtract from an empty register, then the
computation aborts without producing any result (that is we may say that the
subtract instructions are of the form p : (SUB (r) ,K, abort); instead, we simply
will write p : (SUB (r) ,K).

Moreover, acceptance now by definition also requires all registers to be empty
at the end of the computation, i.e., there is an implicit test for zero at the end of a
(successful) computation, that is why we say that the device is partially blind. By
L(PBRM) we denote the family of sets of vectors of natural numbers accepted by
partially blind register machines. It is known (e.g., see [12]) that partially blind
register machines are strictly less powerful than general register machines (hence,
than Turing machines); moreover, L(PBRM) characterizes the Parikh sets of lan-
guages generated by graph-controlled or matrix grammars without appearance
checking.
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2.3 Counter Automata

Register machines can also be equipped with an input tape to be able to process
strings, and the registers then are only used as auxiliary storage. We then call the
registers counters and the automaton a counter automaton (we mention that in
the literature slightly different definitions with respect to the instructions may be
found). The additional instruction needed then is a read instruction reading one
symbol from the input tape:

p : (read(a),K), with p ∈ B \ {h}, K ⊆ B, and a ∈ T .

T is the input alphabet, i.e., in sum we obtain a counter automaton as a construct

M = (m,B, I, h, P, T ).

A counter automaton accepts an input w ∈ T ∗ if and only if it starts in some
initial state and with w on its input tape, and finally M reaches h having read the
whole input string w. Without loss of generality, we again may assume all registers
to be empty at the end of the computation.

It is folklore (e.g., see [23]) that the family of string languages accepted by
counter automata equals RE (in fact, only two counters are needed).

Partially blind counter automata

As in the case of register machines, a counter automaton is called partially blind
if it cannot check whether a register is empty, and acceptance by definition re-
quires the whole input to be read and all counters to be empty at the end of the
computation. For basic results on partially blind counter automata we refer to
the seminal paper [17]. The family of string languages accepted by partially blind
counter automata is denoted by L(PBCA).

2.4 Input-Driven Register Machines and Counter Automata

An input-driven register machine / counter automaton (an IDRM∗ and IDCA∗,
respectively, for short) can be defined in the following way: any decrement of an
input register r / any reading of a terminal symbol a is followed by fixed sequences
of instructions on the working registers / counters only depending on the input
register r / the terminal symbol a. If each such sequence is of length exactly one,
then we speak of a real-time input-driven register machine / counter automaton
(an IDRM and IDCA, respectively, for short).

In the case of an IDCA, these sequences are of the form

p : (read(a),K)→ q : (α(r),Kq), q ∈ K,

with α ∈ {ADD,SUB}, 1 ≤ r ≤ m, and they could be written as one extended
instruction

p : (read(a), α(r),
⋃

q∈K Kq).
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In a similar way, for an IDCA∗ we replace α(r) by the whole sequence of in-
structions following the reading of the input symbol a. A similar notation can be
adapted for the case of a SUB-instruction on an input register instead of read(a).
Moreover, analogous definitions and notations hold for the partially blind variants
of input-driven register machines / counter automata.

Remark 1. We emphasize that we have chosen a very restricted variant of what it
means that the actions on the working registers only depend on the input symbol
just read: no matter which label the read instruction read(a) has, it must always be
followed by the same sequence α(r); only the branching to labels from

⋃
q∈K Kq)

allows for taking different actions afterwards. ut

Remark 2. Allowing a set of initial labels as well as sets of labels in the ADD-
and SUB-instructions may look quite unusual, but especially for the input-driven
automata this feature turns out to be essential:

Assume we had allowed only one initial label i in any input-driven counter
automaton. Now consider the finite multiset language {a, b}: assume there is an
input-driven partially blind counter automaton accepting {a, b}. By definition,
the instruction assigned to the initial label i must be a read instruction. With the
initial label i, only one of the read instructions read(a) or read(b) can be assigned,
hence, only a or only b can be accepted, a contradiction.

A similar argument holds for partially blind register machines taking the input
set of two-dimensional vectors {(1, 0), (0, 1)}: the instruction assigned to i must
be a SUB-instruction either on register 1 or on register 2, again leading to a
contradiction.

On the other hand, with our more general definition, we get closure under
union for free for L(X), X ∈ {IDRM, IDCA, IDRM∗, IDCA∗}. ut

3 Tissue P Automata as Multiset Pushdown Automata

We now define a model of a tissue P automaton and its input-driven variants, first
for the case of working with multisets as input objects:

Definition 2. A tissue P automaton (a tPA∗ for short) is a tuple

Π = (L, V,Σ, Γ,R, g, I, F )

where

• L is a set of labels identifying in a one-to-one manner the |L| cells of the tissue
P system Π;

• V is the alphabet of the system;
• Σ ⊆ V is the (non-empty) input alphabet of the system;
• Γ ⊆ V is the (possibly empty) memory alphabet of the system, Γ ∩Σ = ∅;
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• R is a set of rules of the form (i, p) where i ∈ L and p ∈ Ins∗V ∪Del∗V ∪Sub∗V ,
i.e., p is an extended insertion, deletion or substitution rule over the alphabet
V ; we may collect all rules from cell i in one set and then write Ri = {(i, p) |
(i, p) ∈ R}, so that R =

⋃
i∈LRi; moreover, for the sake of conciseness, we

may simply write Ri = {p | (i, p) ∈ R}, too;
• g is a directed graph describing the underlying communication structure of Π,

g = (N,E) with N = L being the set of nodes of the graph g and the set of
edges E ⊆ L× L;

• I ⊆ L is the set of labels of initial cells one of them containing the input
multiset w at the beginning of a computation;

• f ⊆ L is the set of labels of final cells for acceptance.

If in the definition above we take p ∈ InsV ∪ DelV ∪ SubV instead of p ∈
Ins∗V ∪Del∗V ∪ Sub∗V , then we speak of a tPA instead of a tPA∗.

A tPA∗ Π now works as follows: The computation of Π starts with a vesicle
containing the input multiset w in one of the initial cells i ∈ I, and the computation
proceeds with derivation steps until a specific output condition is fulfilled.

In each derivation step, with the vesicle enclosing the multiset w being in cell k,
one rule from Rk is applied to w and the resulting multiset in its vesicle is moved
to a cell m such that (k,m) ∈ E.

As we are dealing with membrane systems, the classic output condition is to
only consider halting computations; yet in case of automata, the standard accep-
tance condition is reaching a final state, which in our case means reaching a final
cell h, and, moreover, the vesicle to be empty. We will take these two conditions
as our mode of acceptance in this paper, as with the vesicle being empty no decre-
ment rule can be applied any more and, moreover, it is guaranteed that we have
“read the whole input”. Only requiring the vesicle to be empty or else requiring
to have reached a final cell with the vesicle containing no input symbol any more,
are two other variants of acceptance.

The set of multisets accepted by Π is denoted by Psacc(Π). The families of
sets of vectors of natural numbers accepted by tPA∗ and tPA with at most n
cells are denoted by Ln(tPA

∗) and Ln(tPA), respectively. If n is not bounded, we
simply omit the subscript in these notations. In order to specify which rules are
allowed in the tPA∗ and tPA, we may explicitly specify I∗, D∗, S∗ and I,D, S,
respectively, to indicate the use of (extended) insertion, deletion, and substitution
rules. For example, L(tPA, ID) then indicates that only insertion and deletion
rules are used.

Remark 3. The model of a tPA∗ comes very close to the model of a multiset push-
down automaton as introduced in [18]; in fact, the family of sets of vectors of
natural numbers accepted by these multiset pushdown automata equals L(tPA∗).
A formal proof would go far beyond the scope of this paper, but the basic simi-
larity of these two models becomes obvious when identifying the cells in the tPA∗
with the states in the multiset pushdown automaton; moving the vesicle from one
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cell to another one corresponds to changing the states. As shown for the states
of the multiset pushdown automata in [18], we could also restrict ourselves to
only one initial as well as only one final cell in the general case, as this does not
restrict the computational power of a tPA∗. On the other hand, for any of the
following restricted variants this need not be true any more, especially for the
input-driven variants defined later; in this context we also remind the arguments
given in Remark 2. ut

The following result shows that having more than one rule in a cell is not
necessary:

Lemma 1. For any tPA∗ Π there exists an equivalent tPA∗ Π ′ such that every
cell contains at most one rule.

Proof. (Sketch) Let Π = (L, V,Σ, Γ,R, g, I, F ) be a tPA∗. The equivalent tPA∗
Π ′ = (L′, V,Σ, Γ,R′, g′, I ′, F ′) then is constructed as follows:

For every cell k with Rk containing nk rules, instead of cell k we take nk copies
of that cell, cells (k, 1), . . . , (k, nk), into Π ′, each of it containing one of the rules
from Rk, say pk,l, 1 ≤ l ≤ nk. The connection graph g then has to be enlarged to
a graph g′ containing all the edges

{((k, l), (j,m)) | (k, j) ∈ g, 1 ≤ l ≤ nk, 1 ≤ m ≤ nj}.

If cell k contains no rule, we rename it to cell (k, 1), and no rule is contained in
this cell, too.

The new sets of labels of initial and final cells are obtained by taking all copies
of the original cell labels, i.e., we take

I ′ = {(k, l) | (k ∈ I, 1 ≤ l ≤ nk},
F ′ = {(k, l) | (k ∈ F, 1 ≤ l ≤ nk}.

We now immediately infer Ps(Π) = Ps(Π ′). ut

Remark 4. It is easy to avoid having more than one final cell: based one the pre-
ceding proof, we introduce a new final cell f ′, i.e., we take F ′ = {f ′}, with this
new cell not containing any rule; moreover, we add all edges

{((k, l), f ′) | ((k, l), (j,m)) ∈ g′, j ∈ F}.

This new cell corresponds to the label of the final HALT instruction in a register
machine or a counter automaton. ut

Remark 5. Having only one initial cell cannot be shown by only using a new struc-
ture: we may add a new single initial cell i′ containing a substitution rule S(a, a)
for some a ∈ V , and add all edges

{(i′, (k, l)) | (k, l) ∈ I ′}.
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If we want to avoid substitution rules, we may add two new cells containing the
rules I(a) and D(a), respectively, use the first one as the only new initial cell only
having an arc to the second one from where to branch as described above.

Continuing the discussions from Remark 2 and Remark 3 we mention that
both constructions are not feasable for the input-driven variants to be defined in
Subsection 3.2. ut

The following result is based on the fact that the insertion, deletion, or sub-
stitution of a multiset over V can easily be simulated by a sequence of insertions
and deletions:

Lemma 2. For any tPA∗ Π there exists an equivalent tPA Π ′ even not using
substitution rules.

Proof. Let Π = (L, V,Σ, Γ,R, g, I, F ) be a tPA∗. According to Lemma 2, without
loss of generality, we may assume every cell to contain only one rule. The equivalent
tPA Π ′ then is constructed as follows:

Let u → v be a substitution rule with u = u1 . . . uk and v = v1 . . . vm. Then
the following sequence of deletion and insertion rules has the same effect as u→ v:

D(u1)→ . . . D(uk)→ I(v1)→ . . . I(vm)

Taking cells for each of these rules and the corresponding connections into Π ′, it
is easy to see that following this path in Π ′ has the same effect as the application
of the original rule in Π. Similar arguments hold true if u = λ or v = λ, too,
i.e., in case of an insertion or a deletion rule, respectively. In sum, we conclude
Ps(Π) = Ps(Π ′). ut

Now let L(mARB) denote the family of sets of multisets generated by arbitrary
multiset grammars.

Corollary 1. L(tPA∗, IDS) = L(tPA, ID) = L(mARB) = L(PBRM).

Proof. (Sketch) The equality L(tPA∗, IDS) = L(tPA, ID) follows from the defi-
nitions and Lemma 2.

The equality L(tPA∗, IDS) = L(mARB) is a consequence of the observation
discussed above in Remark 3 that L(tPA∗, IDS) corresponds to the family of
sets of multisets accepted by multiset pushdwon automata as defined in [18]. In
a similar way, interpreting the cells in a tissue P automaton as the states of a
partially blind register machine and seeing the correspondence of the acceptance
conditions, we also infer the equality L(tPA∗, IDS) = L(PBRM). The details are
left to the reader. ut
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3.1 Accepting Strings

The tissue P automata defined above can also be used to accept sets of strings
by assuming the input string to be given on a separate input tape, from where
the symbols of the input string are read from left to right. As when going from
register machines to counter automata, we use the additional instruction (read
instruction) read(a) with a ∈ Σ, Σ being the input alphabet. The corresponding
automata then are defined as follows:

Definition 3. A tissue P automaton for strings (a tPAL∗ for short) is a tuple

Π = (L, V,Σ, Γ,R, g, I, F )

where L, V , Σ, Γ , R, g, I, F are defined as for a tPA∗, except that besides
insertion, deletion, and substitution rules we also allow rules of the form read(a)
with a ∈ T , i.e., read instructions.

If we only take rules from InsV ∪DelV ∪SubV instead of Ins∗V ∪Del∗V ∪Sub∗V ,
then we speak of a tPAL instead of a tPAL∗.

A tPAL∗ Π now works as follows: The computation of Π starts with the input
string on the input tape as well as an empty vesicle in one of the initial cells i ∈ I,
and the computation proceeds with derivation steps until the whole input string
has been read and the vesicle has reached a final cell, again being empty at the
end of the computation.

In each derivation step, with the vesicle enclosing the multiset w being in cell
k, one rule from Rk is applied, either reading a symbol from the input tape or
affecting w, and the resulting multiset in its vesicle then is moved to a cell m such
that (k,m) ∈ E.

The set of strings accepted by Π is denoted by L(Π). The families of sets
of strings accepted by tPAL∗ and tPAL with at most n cells are denoted by
Ln(tPAL

∗) and Ln(tPAL), respectively. If n is not bounded, we simply omit the
subscript in these notations. In order to specify which rules are allowed in the tPA∗
and tPA, we again may explicitly specify I∗, D∗, S∗ and I,D, S, respectively, to
indicate the use of (extended) insertion, deletion, and substitution rules.

As for tissue P automata accepting multisets, also for the ones accepting strings
we obtain some similar results as shown above:

Lemma 3. For any tPAL∗ Π there exists an equivalent tPAL∗ Π ′ such that every
cell contains at most one rule.

Lemma 4. For any tPAL∗ Π there exists an equivalent tPAL Π ′ even not using
substitution rules.

Corollary 2. L(tPAL∗, IDS) = L(tPAL, ID) = L(PBCA).
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3.2 Input-Driven Tissue P Automata

We now define the input-driven variants of tPA∗ and tPA as well as tPAL∗ and
tPAL:

Definition 4. A tPA∗ Π = (L, V,Σ, Γ,R, g, I, F ) is called input-driven (and
called a tIDPA∗ for short) if the following conditions hold true:

• to each cell, (at most) one rule is assigned;
• any decrement of an input register r is followed by some fixed sequence of

instructions on the working registers only depending on the input register r
before a cell with the next decrement instruction on an input register is reached.
Such a sequence of instructions may even be of length zero.

If each such sequence is of length exactly one, then we speak of a real-time input-
driven tIDPAL∗ (a tIDPArt∗ for short).

Definition 5. A tPAL∗ Π = (L, V,Σ, Γ,R, g, I, F ) is called input-driven (and
called a tIDPAL∗ for short) if the following conditions hold true:

• to each cell, (at most) one rule is assigned;
• any reading of a terminal symbol a by a read instruction read(a) is followed by

some fixed sequence of instructions on the working registers only depending on
the the terminal symbol a before a cell with the next read instruction is reached.
Such a sequence of instructions may even be of length zero.

If each such sequence is of length exactly one, then we speak of a real-time input-
driven tPAL∗ (a tPALrt∗ for short).

The corresponding families of sets of vectors of natural numbers and of sets
of strings accepted by tissue P automata of type X with X being one of the
types tIDPA∗, tIDPA, tIDPA∗rt, tIDPArt as well as tIDPAL∗, tIDPAL,
tIDPAL∗rt, tIDPALrt, are denoted by L(X).

Remark 6. As already discussed in Remark 1 for input-driven register machines
and counter automata, we emphasize that we have chosen a very restricted variant
of what it means that the actions on the multiset in the vesicle only depend on
the input symbol just read: no matter in which cell we have the read instruction
read(a), it must always be followed by the same finite sequence of instructions not
including read instructions. ut

Remark 7. If we only have SUB-instructions on input registers / read instructions,
i.e., if the tPA∗ / tPAL∗ does not use the vesicle at all for storing any intermediate
information, then such a tPA∗ / tPAL∗ can be interpreted as a finite automaton
accepting a regular multiset / string language. In this case, the condition of not
having rules on the vesicle already subsumes the condition of the automaton being
input-driven. ut
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3.3 One-Membrane Antiport P Automata

The idea of using states instead of cells can also be “implemented” by using a
well-investigated model of membrane systems using antiport rules:

Definition 6. A one-membrane antiport P automaton (a 1APA∗ for short) is a
tuple Π = (V,Σ, Γ,Q,R, I, F ) where

• V is the alphabet of the system;
• Σ ⊆ V is the (non-empty) input alphabet of the system;
• Γ ⊆ V is the (possibly empty) memory alphabet of the system, Γ ∩Σ = ∅;
• Q ⊆ V , Q ∩ (Γ ∪Σ) = ∅, is the set of states;
• R is a set of rules of the form pu→ qv, p, q ∈ Q, u ∈ (Γ ∪Σ)∗, v ∈ Σ∗;
• I ⊆ Q is the set of initial states;
• F ⊆ Q is the set of final states.

The 1APA∗ can be seen as a membrane system consisting of only one mem-
brane with the rules pu→ qv interpreted as antiport rules (pu, out; qv, in), i.e., the
multiset pu leaves the membrane region and the multiset qv enters the membrane
region.

Π starts with an input multiset w0 together with one of the initial states p0,
i.e., with w0p0 in its single membrane region, and then applies rules from R until a
configuration with only pf ∈ F in the membrane region is reached, thus accepting
the input multiset w0.

For antiport P automata the acceptance of strings can be defined without
needing an input tape as follows, e.g., see [28]: the rules in R now are of the form
pu→ qv, p, q ∈ Q, u ∈ Γ ∗ and v ∈ (Γ ∪Σ)∗, i.e., the input symbols are now taken
from outside the membrane (from the environment); the sequence how the input
symbols are taken in defines the input string (we may assume v to contain only
one symbol from Σ; otherwise, we have to take any permutation of the symbols
taken in in one step for defining several input strings).

Using such rules and the interpretation of the input string as defined above, we
obtain the model of a one-membrane antiport P automaton for strings (a 1APAL∗

for short).

As in the preceding subsections we now can define specific variants of 1APA∗
and 1APAL∗, e.g., the corresponding input-driven automata. Yet as we have in-
troduced these models especially to show the correspondence with an automaton
model well-known in the area of P systems, we leave the technical details to the
interested reader.

4 Examples and Results

The concepts of tIDPA∗ and IDPBRM∗ are closely related:
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Theorem 1. L(tIDPA∗) ⊆ L(PBRM∗) and
L(tIDPA∗) = L(tIDPA∗, ID) = L(IDPBRM∗).

Proof. (Sketch) The inclusion L(IDPBRM∗) ⊆ L(PBRM∗) is obvious from the
definitions.

The equality L(tIDPA, ID∗) = L(IDPBRM∗) follows from the definitions of
these types of input-driven automata: as already mentioned earlier, the cells in a
tPA∗ correspond to the states in a PBRM . The acceptance conditions – the vesicle
being empty in a final cell in a tPA∗ and all registers being empty in a PBRM
when reaching the final label – directly correspond to each other, too. Moreover,
insertion and deletion rules directly correspond to ADD- and SUB-instructions.
Finally, the conditions for the input-driven variants requiring the same actions
for a consumed input symbol and the decrement of the corresponding register are
equivalent, too.

The equality L(tIDPA∗) = L(tIDPA∗, ID) follows from the possibility to
simulate substitution rules by a sequence of insertion and deletion rules. This
observation completes the proof. ut

Using similar arguments as in the preceding proof, now considering read in-
structions instead of decrements on input registers, we obtain the corresponding
result for the string case:

Theorem 2. L(tIDPAL∗) ⊆ L(PBCA∗) and
L(tIDPAL∗) = L(tIDPAL∗, ID) = L(IDPBCA∗).

In the real-time variants, we cannot use substitution rules in the input-driven
tissue P automata, as the simulation by deletion and insertion rules takes more
than one step:

Theorem 3. L(tIDPArt, ID) = L(IDPBRMrt) and
L(tIDPALrt, ID) = L(IDPBCArt).

We now illustrate the computational power of input-driven tissue P automata
accepting strings by showing how well-known string languages can be accepted.
We remark that in all cases the automaton has only one initial label and one final
label.

Example 1. The Dyck language LD over the alphabet of brackets { [ , ] } can easily
be accepted by the tIDPBCArt MD:

MD = (1, B = {1, 2, 3, 4, 5}, l0 = 1, lh = 5, P, T = { [ , ] }) ,
P = {1 : (read ( [ ) , {2}) , 2 : (ADD (1) , {1, 3}) ,

3 : (read ( ] ) , {4}) , 4 : (SUB (1) , {1, 3, 5}) 5 : HALT )}.

LD can also be accepted by the corresponding tIDPALrt ΠD:
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ΠD = (L = {1, 2, 3, 4, 5}, V,Σ, Γ,R, g = (L,E), I = {1}, F = {5}) ,
V = {a1, [ , ] },
Σ = { [ , ] },
Γ = {a1},
R = {(1, read ( [ )), (2, I (a1)), (3, read ( ] )), (4, D (a1))},
E = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1), (4, 3), (4, 5)}.

The two constructions elaborated above implement the following definition of
a well-formed bracket expression w over the alphabet of brackets { [ , ] }:

• for every prefix of w, the number of closing brackets ] must not exceed the
number of opening brackets [ ;

• the number of closing brackets ] in w equals the number of opening brackets [ .

Hence, during the whole computation, the (non-negative) difference between
the number of opening and the number of closing brackets is stored as the number
of symbols a1; at the end, this number must be zero, which is guaranteed by the
acceptance conditions. ut

L(IDPBCArt) even contains a non-context-free language:

Example 2. The language Lil = {anbmcndm | m,n ≥ 1} is not context-free, but
accepted by the following tIDPALrt Πil:

Πil = (L = {1, . . . , 9}, V,Σ, Γ,R, g = (L,E), I = {1}, F = {9}) ,
V = {a1, a2, a, b, c, d},
Σ = {a, b, c, d},
Γ = {a1, a2},
R = {(1, read ( a )), (2, I (a1)), (3, read ( b )), (4, I (a2)),

(5, read ( c )), (6, D (a1)), (7, read ( d )), (8, D (a2))},
E = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 3),

(4, 5), (5, 6), (6, 5), (6, 7), (7, 8), (8, 7), (8, 9)}.

By this construction, we conclude Lil ∈ L(tIDPALrt, ID). ut

For the language considered in the next example we show that it is in
L(tIDPAL∗rt), but we claim that it is not in L(tIDPALrt):

Example 3. Let k > 2 and consider the string language Lk = {b1n . . . bkn | n ≥ 1},
which is not context-free, but accepted by the following tIDPAL∗rt Π:
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1start

read(a)

2

I(a1)

3

read(b)

4

I(a2)

5

read(c)

6

D(a1)

7

read(d)

8

D(a2)

9

Fig. 1. Graphic representation of the tIDPALrt Πil.

Πk = (L = {1, . . . , 2k + 1}, V,Σ, Γ,R, g = (L,E), I = {1}, F = {2k + 1}) ,
V = {ai, bi | 1 ≤ i ≤ k},
Σ = {bi | 1 ≤ i ≤ k},
Γ = {ai | 1 ≤ i ≤ k},
R = {(1, read ( b1 )), (2, I (a2 . . . ak))}
∪ {(2j − 1, read ( bj )), (2j,D (aj)) | 1 < j ≤ k},

E = {(2j − 1, 2j), (2j, 2j − 1), (2j, 2j + 1) | 1 ≤ j ≤ k}.

Without proof we claim that Lk /∈ L(tIDPALrt). ut

5 Conclusion and Future Research

In this paper, we have introduced tissue P automata as a specific model of multiset
automata as well as input-driven tissue P automata where the rules to be applied
depend on the input symbol. Taking strings as input objects, these are either read
from an input tape or defined by the sequence of symbols taken in, and as an
additional storage of a multiset of different symbols we use a vesicle which moves
from one cell of the tissue P system to another one depending on the input symbol;
the input symbol at the same time determines whether (one or more) symbols are
added to the multiset in the vesicle or removed from there and where the vesicle
moves afterwards. The given input is accepted if the whole input has been read
and the vesicle has reached a final cell and/or is empty at this moment. When
using multisets as input objects, these are enclosed in the vesicle in the input cell
at the beginning of a computation, which vesicle then will also take the additional
symbols. The given input multiset is accepted if no input symbols are present any
more and the vesicle has reached a final cell and is empty at this moment.

As rules operating on the multiset enclosed in the vesicle when read-
ing/consuming an input symbol we have used insertion, deletion, and substitution
of multisets, working in the sequential derivation mode. As restricted variants, we
have considered systems without allowing substitution of multisets and systems
only allowing symbols to be inserted or deleted (or substituted).
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We have shown how input-driven tissue P automata with multisets and strings
can be characterized by input-driven register machines and input-driven counter
automata, respectively. Moreover, we have exhibited some illustrative examples,
for example, how the Dyck language or even some non-contextfree languages can
be accepted by simple variants of input-driven tissue P automata.

Several challenging topics remain for future research: for example, a character-
ization of the language classes accepted by several variants of tissue P automata
accepting multisets or strings, especially for the input-driven variants, introduced
in this paper is still open.

As acceptance condition we have only considered reaching the final cell h with
an empty vesicle. The other variants of acceptance, i.e., only requiring the vesicle to
be empty or else requiring to have reached the final cell with the vesicle containing
no input symbol any more, are to be investigated in the future in more detail.
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