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1 Introduction

Membrane computing [19] is a research field initiated twenty years ago [17, 18] by
Gheorghe Păun. Initially inspired by the structure and functioning of the living
cells, the field has known a fast development, different types of membrane systems
(or P systems) being investigated.

Having so many computational models (cell-like, tissue-like P systems, P
colonies, kernel P systems) and also different software implementations for these
models, it is important to devise testing methodologies that ensure that the imple-
mentation conforms with the specification. The testing task is not trivial, given the
fact that the models are parallel and non-deterministic. Previous works on P sys-
tems testing include testing cell-like P systems with methods like finite state-based
inspired [13], stream X-machine based testing [14], mutation testing for evaluating
the efficiency of the test sets [16], model-checking based testing [15].

In this paper we will present a testing approach for kernel P systems, which is
based on the X-machine testing approach and has as core concept the identifiability
of multisets of rules. Kernel P systems are a model introduced in [9], which can be
simulated using a software framework, called kPWorkbench [5] or some earlier
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variants (so called simple kP systems) using P-Lingua and the MeCoSim simulator
[11].

This paper is structured as follows: Section 2 presents the preliminaries regard-
ing kP systems and theoretical background regarding automata and X-machine
based testing. Section 3 introduces the concept of identifiable kernel P systems,
while Section 4 illustrates our testing approach for kP systems. Finally, conclusions
are presented in Section 5.

2 Preliminaries

This section briefly presents the notations used, then gives the basic definitions
regarding kernel P systems [9] and presents the previous testing approaches for
automata and X-machines, that have been applied also for testing simple cell-like
P systems.

In the following we introduce the notations used in the paper. For a finite
alphabet A = {a1, ..., ap}, A∗ represents the set of all strings (sequences) over A.
The empty string is denoted by λ and A+ = A∗ \{λ} denotes the set of non-empty
strings. An denotes the set of all strings of length n, n ≥ 0, with members in the
alphabet A, and A[n] =

⋃
0≤i≤nA

i denotes the set of all strings of length at most
n.

For a string u ∈ A∗, |u|a denotes the number of occurrences of a in u, where
a ∈ A. For a subset S ⊆ A, |u|S denotes the number of occurrences of the symbols
from S in u. The length of a string u is given by

∑
ai∈A |u|ai . The length of the

empty string is 0, i.e. |λ| = 0.
A multiset over A is a mapping f : A → N. Considering only the elements

from the support of f (where f(aij ) > 0, for some j, 1 ≤ j ≤ p), the multiset is

represented as a string a
f(ai1 )
i1

. . . a
f(aip )

ip
, where the order is not important. In the

sequel multisets will be represented by such strings.

2.1 Kernel P systems

In the following we will give a formal definition of kernel P systems (or kP sys-
tems) [9]. We start by introducing the concept of a compartment type utilised later
in defining the compartments of a kernel P system (kP system).

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.

Kernel P systems have features inspired by object-oriented programming, for
example one compartment type can have one or more instances. These instances
share the same set of rules and execution strategies (so will deliver the same
functionality), but they may contain different multisets of objects and different
neighbours according to the graph relation specified.
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Definition 2. A kP system of degree n is a tuple kΠ = (A,µ,C1, . . . , Cn, i0),
where

• A is a finite set of elements called objects;
• µ defines the membrane structure, which is a graph, (V,E), where V is a set

of vertices representing components (compartments), and E is a set of edges,
i. e., links between components;

• Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment of the system consisting of a
compartment type, ti, from a set T and an initial multiset, wi,0 over A; the
type ti = (Ri, σi) consists of a set of evolution rules, Ri, and an execution
strategy, σi;

• i0 is the output compartment where the result is obtained.

In this paper we will only deal with a simplified version of kP systems having
one single compartment as this does not affect the general method introduced here
and makes the presentation easier to follow. For details regarding the ways of
flattening an arbitrary P system, including the kP system discussed in this paper,
we refer mainly to [7], but similar approaches are also presented in other papers
([20], [1]). The kP system will be denoted kΠ = (A,µ1, C1, 1), where µ1 denotes
the graph with one node.

Within the general kP systems framework, the following types of evolution
rules have been considered so far:

• rewriting and communication rule: x→ y{g}, where g represents a guard (will
be formally explained in Def. 4), x ∈ A+ and y ∈ A∗, where y is a multiset with
potential different compartment type targets (each symbol from the right side of
the rule can be sent to a different compartment, specified by its type; if multiple
compartments of the same type are linked to the current compartment, then
one is randomly chosen to be the target). Unlike cell-like P systems, the targets
in kP systems indicate only the types of compartments to which the objects will
be sent, not particular instances (for example, y = (a1, t1) . . . (ah, th), where
h ≥ 0, and for each 1 ≤ j ≤ h, aj ∈ A and tj indicates a compartment type
from T ).

• structure changing rules: membrane division, membrane dissolution, link cre-
ation and link destruction rules, which all may also incorporate complex guards
and that are covered in detail in [9]. However, this type of rules will not be
considered in the following discussion.

Remark 1. In the context of one compartment kP systems, there will be no need to
specify the target compartment, so the rules will be simple communication rules,
which in addition can have guards. Each rule occurring in the following discussion
has the form r : x → y{g}, where r identifies the rule and is called label, x → y
is the rule itself and g is its guard. The part x → y is also called the body of
the rule, denoted also b(r). The guards are constructed using multisets over A, as
operands, and relational or Boolean operators. The definition of the guards is now
introduced. We start with some notations.
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For a multiset w over A and an element a ∈ A, we denote by |w|a the number
of objects a occurring in w. Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of
relational operators, γ ∈ Rel, a relational operator, and an a multiset, consisting
of n copies of a. We first introduce an abstract relational expression.

Definition 3. If g is the abstract relational expression denoting γan and w a
multiset, then the guard g applied to w denotes the relational expression |w|aγn.

The abstract relational expression g is true for the multiset w, if |w|aγn is true.
We consider now the following Boolean operators ¬ (negation), ∧ (conjunc-

tion) and ∨ (disjunction). An abstract Boolean expression is defined by one of the
following conditions:

• any abstract relational expression is an abstract Boolean expression;
• if g and h are abstract Boolean expressions then ¬g, g∧h and g∨h are abstract

Boolean expressions.

The concept of a guard, introduced for kP systems, is a generalisation of the
promoter and inhibitor concepts utilised by some variants of P systems.

Definition 4. If g is an abstract Boolean expression containing gi, 1 ≤ i ≤ q,
abstract relational expressions and w a multiset, then g applied to w means the
Boolean expression obtained from g by applying gi to w for any i, 1 ≤ i ≤ q.

As in the case of an abstract relational expression, the guard g is true with
respect to the multiset w, if the abstract Boolean expression g applied to w is true.

Example 1. If g is the guard defined by the abstract Boolean expression ≥ a4∧ <
b2 ∨¬ > c and w a multiset, then g applied to w is true if it has at least 4 a′s and
less than 2 b′s or no more than one c.

In addition to its evolution rules, each compartment type in a kP system has
an associated execution strategy. The rules corresponding to a compartment can
be grouped in blocks, each having one of the following strategies:

In kP systems the way in which rules are executed is defined for each compart-
ment type t from T – see Def. 1. As in Def. 1, Lab(R) is the set of labels of the
rules R.

Definition 5. For a compartment type t = (R, σ) from T and r ∈ Lab(R),
r1, . . . , rs ∈ Lab(R), the execution strategy, σ, is defined by the following

• σ = λ, means no rule from the current compartment will be executed;
• σ = {r} – the rule r is executed;
• σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be non-determin-

istically chosen and executed; if none is applicable then nothing is executed;
this is called alternative or choice;

• σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times ( arbitrary
parallelism);
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• σ = {r1, . . . , rs}> – the rules are executed according to the maximal parallelism
strategy;

• σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤ s,
describes any of the above cases; if one of σi fails to be executed then the rest
is no longer executed.

These execution strategies and the fact that in any compartment several blocks
with different strategies can be composed and executed offer a lot of flexibility to
the kP system designer, similarly to procedural programming.

Definition 6. A configuration of a kP system, kΠ, with n compartments, is a
tuple c = (c1, . . . , cn), where ci ∈ A∗, 1 ≤ i ≤ n, is the multiset from compartment
i. The initial configuration is (w1, . . . , wn), where wi ∈ A∗ is the initial multiset
of the compartment i, 1 ≤ i ≤ n.

A transition (or computation step), introduced by the next definition, is the
process of passing from one configuration to another.

Definition 7. Given two configurations c = (c1, . . . , cn) and c′ = (c′1, . . . , c
′
n) of a

kP system, kΠ, with n compartments, where for any i, 1 ≤ i ≤ n, ui ∈ A∗, and a
multiset of rules Mi = r

n1,i

1,i . . . r
nki,i

ki,i
, nj,i ≥ 0, 1 ≤ j ≤ ki, ki ≥ 0, a transition or

a computation step is the process of obtaining c′ from c by using the multisets of
rules Mi, 1 ≤ i ≤ n, denoted by c =⇒(M1,...,Mn) c′, such that for each i, 1 ≤ i ≤ n,
c′i is the multiset obtained from ci by first extracting all the objects that are in the
left-hand side of each rule of Mi from ci and then adding all the objects a that are
in the right-hand side of each rule of Mi represented as (a, ti) and all the objects b
that are in the right-hand side of each rule of Mj, j 6= i, such that b is represented
as (b, ti).

In the theory of kP systems, each compartment might have its own execution
strategy. In the sequel we focus on three such execution strategies, namely max-
imal parallelism, arbitrary parallelism (also called asynchronous execution) and
sequential execution. These will be denoted by max, async and seq, respectively.
When in a transition from c to c′ using (M1, . . . ,Mm), we intend to refer to a
specific transition mode tm, tm ∈ {max, async, seq}, then this will be denoted by

c =⇒(M1,...,Mm)
tm c′.

A computation in a P system is a sequence of transitions (computation steps).
A configuration is called final configuration, if no rule can be applied to it. In

a final configuration the computation stops.
As usual in P systems, we only consider terminal computations, i.e., those

arriving in a final configuration and using one of the above mentioned transition
modes. We are now ready to define the result of a computation.

Definition 8. For a kP system kΠ using the transition mode tm, tm ∈ {max,
async, seq}, in each compartment, we denote by Ntm(Π) the number of objects
appearing in the output compartment of a final configuration.
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Two kP systems kΠ and kΠ ′ are called equivalent with respect to the transition
mode tm, tm ∈ {max, async, seq}, if Ntm(kΠ) = Ntm(kΠ ′).

In this paper we will only deal with kP systems having one single compartment
as this does not affect the general method introduced here and makes the presen-
tation easier to follow. Indeed, limiting the investigation to one compartment kP
systems does not affect the generality of it due to the fact that there are ways of
flattening an arbitrary P system, including the kP system discussed in this paper,
into a P system with one single compartment. For details regarding the flattening
of a P system we refer mainly to [7], but similar approaches are also presented
in other papers ([20], [1]). Such a kP system will be denoted kΠ = (A,µ1, C1, 1),
where µ1 denotes the graph with one node. The rules on the right-hand side will
have multisets over A, as in the case of one single compartment there is no need
to indicate where objects are sent to.

2.2 The W -method for testing finite cover automata

In the following subsection we introduce the basic finite cover automata concepts
[3, 12] and the W -method for generating test suites from finite cover automata
[13]. We will consider only deterministic finite automata.

Finite Cover Automata

Definition 9. A finite automaton (abbreviated FA) is a tuple A = (V,Q, q0, F, h),
where:

• V is the finite input alphabet;
• Q is the finite set of states;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final states;
• h : Q× V → Q is the next-state function.

Definition 10. Let A = (V,Q, q0, F, h) be a FA, U ⊆ V ∗ a finite language and l
the length of the longest sequence(s) in U . Then A is called a deterministic finite
cover automaton (DFCA) of U if LA ∩ V [l] = U . A minimal DFCA for U is a
DFCA for U having the least number of states.

The concept of DFCA was introduced by Câmpeanu et al. [2], [3]. A minimal
DFCA have considerably fewer states than the minimal FA that accepts U .

The W -method

In conformance testing there is a formal specification of the system (for example a
FA) and the aim is to generate a test suite such that whenever the implementation
under test (IUT) passes all tests, it is guaranteed to conform to the specification.
The IUT is unknown but it is assumed to behave like some element from a set of
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models, called fault model. In the case of the W -method, the fault model consists of
all FAs A′ with the same input alphabet V as the specification A, whose number of
statesm′ does not exceed the number of statesm of A by more than k (m′−m ≤ k),
where k ≥ 0 is a predetermined integer that must be estimated by the tester.

The W -method was originally devised for when the conformance relation is
automata equivalence [4], but in this paper we are interested in conformance for
bounded sequences. This problem is described in [10] as follows: given an FA
specification A and an integer l ≥ 1 (the upper bound) such that LA contains at
least one sequence of length l, we want to construct a set of sequences of length
less than or equal to l that can establish whether the implementation behaves as
specified for all sequences in V [l]. Since LA contains at least one sequence of length
l, A is a DFCA for LA ∩ V [l] and so the test suite will check whether the IUT
model A′ is also a DFCA for LA ∩ V [l].

A test suite will be a finite set Yk ⊆ V [l] of input sequences that, for every
A′ in the fault model that is not V [l]-equivalent to A, will produce at least one
erroneous output. That is, A and A′ are V [l]-equivalent whenever A and A′ are
Yk-equivalent.

Suppose the specification A used for test generation is a minimal DFCA for
LA ∩ V [l]. The W -method for bounded sequences, as developed in [12], involves
the selection of two sets of input sequences, S and W , as follows:

Definition 11. S ⊆ V ∗ is called a proper state cover of A if for every state q of
A there exists s ∈ S such that h(q0, s) = q and |s| = level(q).

Definition 12. W ⊆ V ∗ is called a strong characterisation set of A if for every
two states q1 and q2 of A and every j ≥ 0, if q1 and q2 are V [j]-distinguishable
then q1 and q2 are (W ∩ V [j])-distinguishable.

Naturally, in the above definition, it is sufficient for q1 and q2 to be (W ∩V [j])-
distinguishable when j is the length of the shortest sequences that distinguish
between q1 and q2.

Once S and W have been selected, the test suite is obtained using the formula:
Yk = SV [k + 1](W ∪ {λ}) ∩ V [l] \ {λ} [12].

2.3 X-machine based testing

This subsection presents the X-machine based testing methodology, giving the
formal definitions for X-machines, the test transformation of an X-machine and
l-bounded conformance test suites. For more details and complete proofs [10] can
be consulted, here only the main results are given.

An X-machine is a finite automaton in which transitions are labelled by partial
functions on a data set X instead of mere symbols [6].

Definition 13. An X-machine (XM) is a tuple Z = (Q,X,Φ,H, q0, x0) where:

• Q is a finite set of states;
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• X is the (possible infinite) data set;
• Φ is a finite set of distinct processing functions; a processing function is a

non-empty (partial) function of type X → X;
• H is the (partial) next-state function, H : Q× Φ→ Q;
• q0 ∈ Q is the initial state;
• x0 ∈ X is the initial data value.

We regard an X-machine as a finite automaton with the arcs labelled by
functions from the set Φ, which is often called the type of Z. The automaton
AZ = (Φ,Q,H, q0) over the alphabet Φ is called the associated finite automaton
(FA) of Z. The language accepted by the automaton is denoted by LAZ

.

Definition 14. A computation of Z is a sequence x0, . . . xn, with xi ∈ X, 1 ≤
i ≤ n, such that there exist φ1, . . . , φn ∈ Φ with φi(xi−1) = xi, 1 ≤ i ≤ n and
φ1 . . . φn ∈ LAZ

. The set of computations of Z is denoted by Comp(Z).

A sequence of processing functions that can be applied in the initial data value
x0 is said to be controllable.

Definition 15. A sequence φ1, . . . , φn ∈ Φ∗, with φi ∈ Φ, 1 ≤ i ≤ n, is said to be
controllable if there exist x1, . . . xn ∈ X such that φi(xi−1) = xi, 1 ≤ i ≤ n. A set
P ⊆ Φ∗ is called controllable if for every p ∈ P , p is controllable.

Let us assume we have an X-machine specification Z and an (unknown) IUT
that behaves like an element Z ′ of a fault model. In this case, the fault model
will be a set of X-machines with the same data set X, type Φ and initial data
value x0 as the specification. The idea of test generation from an X-machine is to
reduce checking that the IUT Z ′ conforms to the specification Z to checking that
the associated automaton of the IUT conforms to the associated automaton of the
X-machine specification.

Definition 16. The test transformation of Z is the (partial) function t : Φ∗ → X∗

defined by:

• t(λ) = x0. (1)
• Let p ∈ Φ∗ and φ ∈ Φ.

– Suppose t(p) is defined. Let t(p) = x0 . . . xn.
· If xn ∈ domφ then:
· If p ∈ LAZ

then t(pφ) = t(p)φ(xn). (2)
· Else t(pφ) = t(p). (3)

· Else t(pφ) is undefined. (4)
– Otherwise, t(pφ) is undefined. (5)

Lemma 1. Let t be a test transformation of Z and p = φ1 . . . φn, with φ1, . . . , φn ∈
Φ.

• Suppose p is controllable and let x1, . . . , xn ∈ X such that φi(xi−1) = xi, 1 ≤
i ≤ n.
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– If p ∈ LAZ
, then t(p) = x0 . . . xn.

– If p /∈ LAZ
, then t(p) = x0 . . . xk+1, where 0 ≤ k ≤ n − 1, is such that

φ1 . . . φk ∈ LAZ
and φ1 . . . φkφk+1 /∈ LAZ

.
• If p is not controllable, then t(p) is not defined.

In order to establish that the associated automaton of the IUT Z ′ conforms
to the associated automaton of the X-machine specification Z, we have to be able
to identify the processing functions that are applied when the computations of Z
and Z ′ are examined.

Definition 17. Φ is called identifiable if for all φ1, φ2 ∈ Φ, whenever there exists
x ∈ X such that φ1(x) = φ2(x), φ1 = φ2.

If Φ is identifiable, then we are able to establish if a controllable sequence of
processing functions is correctly implemented by examining the computations of
the specification Z and the implementation Z ′, as shown by the following lemma.

Lemma 2. Let Z and Z ′ be XMs with type Φ. Suppose Φ is identifiable. Let p =
φ1 . . . φn ∈ Φ∗, with φi ∈ Φ, 1 ≤ i ≤ n, be a controllable sequence. Suppose t(p) is
a computation of Z if and only if t(p) is a computation of Z ′. Then p ∈ LAZ

if
and only if p ∈ LA′

Z
.

Definition 18. Let Z be an X-machine and C a fault model for Z. An l-bounded
conformance test suite for Z w.r.t. C, l > 0, is a set T ⊆ X[l + 1] such that
for every Z ′ ∈ C the following holds: if T ∩ Comp(Z) = T ∩ Comp(Z ′) then
Comp(Z) ∩X[l + 1] = Comp(Z ′) ∩X[l + 1].

That is, whenever any element of T is a computation of Z if and only if it is a
computation of Z ′, Z ′ conforms to Z for sequences of length up to l. The following
theorem shows that the test transformation defined earlier provides a mechanism
for converting test suites for finite automata into set suites for X-machines.

Theorem 1. Let Z be an XM with type Φ, data set X and initial data value x0.
Suppose Φ is identifiable and LAZ

∪Φ[l] is controllable. Let C be a set of XMs such
that for every Z ′ ∈ C, LA′

Z
∩Φ[l] is controllable. Let P ⊆ Φ[l], such that, for every

Z ′ ∈ C, whenever P ∩ LAZ
= P ∩ LA′

Z
we have LAZ

∩ Φ[l] = LA′
Z
∩ Φ[l]. Then

t(P ) is an l-bounded conformance test suite for Z w.r.t. C.

Let l > 0 be a predefined upper bound. We assume that Φ is identifiable and
LAZ

∩ Φ[l] is controllable. We assume that AZ , the associated automaton of Z, is
a minimal DFCA for LAZ

∪ Φ[l] (if not, this is minimised 3). Suppose the fault
model C is the set of X-machines Z ′ with the same data set X, type Φ and initial
data value x0 as Z such that LAZ′ ∩ Φ[l] is controllable, whose number of states
m′ does not exceed the number of states m of Z by more than k (m′ −m ≤ k),
k ≤ 0. Then an l-bounded conformance test suite for Z w.r.t. C is

3 The minimisation preserves the controlability requirements as the set LAZ ∩ Φ[l] re-
mains unchanged.
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Tk = t(SΦ[k + 1](W ∪ {λ}) ∩ Φ[l] \ {λ}),

where S is a proper state cover of AZ , W is a strong characterisation set of AZ

and t is a test transformation of Z.

3 Identifiable transitions in kernel P systems

The concept of identifiable transitions in cell-like P systems was first introduced
in [10] and then extended to kernel P systems in [8]. We now aim to present the
identifiability concept in the context of kP systems and then illustrate how it is
used as basis for kP systems testing. The identifiability concept is first introduced
for simple rules and then is generalised for multisets of rules.

Definition 19. Two rules r1 : x1 → y1{g1} and r2 : x2 → y2{g2} from R1, are
said to be identifiable in configuration c, if they are applicable to c and if c =⇒r1 c′

and c =⇒r2 c′ then b(r1) = b(r2).

According to the above definition the rules r1 and r2 are identifiable in c if
when the result of applying them to c is the same then their bodies, x1 → y1
and x2 → y2, are identical. The rules are not identifiable when the condition from
Definition 19 is not satisfied.

A multiset or rules M = rn1
1 . . . rnk

k ,M ∈ R∗1, where ri : xi → yi{gi}, 1 ≤ i ≤ k,
is applicable to the multiset c iff xn1

1 . . . xnk

k ⊆ c and gi is true in c for 1 ≤ i ≤ k.

Definition 20. The multisets of rules M ′,M ′′ ∈ R∗1, are said to be identifiable, if
there is a configuration c where M ′ and M ′′ are applicable and if c =⇒M ′

c′ and
c =⇒M ′′

c′ then M ′ = M ′′.

Example 2. Considering the rules r1 : a → x{≥ a}, r2 : b → y{≥ b}, r3 : a →
y{≥ a}, r4 : b→ x{≥ b}, and the configuration ab it is clear that the multisets of
rules M ′ = r1r2 and M ′′ = r3r4 are not identifiable in the configuration c = ab,
as c = ab =⇒M ′

c′ = xy and c = ab =⇒M ′′
c′ = xy, but M ′ 6= M ′′.

A kP system kΠ has its rules identifiable if any two multisets of rules,M ′,M ′′ ∈
R∗1, are identifiable.

Given a multiset of rules M = rn1
1 . . . rnk

k , where ri : xi → yi{gi}, 1 ≤ i ≤ k, we
denote by rM the rule xn1

1 . . . xnk

k → yn1
1 . . . ynk

k {g1∧· · ·∧gk}, i.e., the concatenation
of all the rules in M . One can observe that the applicability of the multiset of rules
M to a certain configuration is equivalent to the applicability of the rule rM to
that configuration. It follows that one can study first the usage of simple rules.

Remark 2. For any two rules ri : xi → yi, 1 ≤ i ≤ 2, when we check whether they
are identifiable or not one can write them as ri : uvi → wzi{gi}, 1 ≤ i ≤ 2, where
for any a ∈ V , a appears in at most one of the v1 or v2, i.e., all the common
symbols on the left-hand side of the rules are in u. Let us denote by cr1,r2 , the
configuration uv1v2. Obviously this is the smallest configuration in which r1 and
r2 are applicable, given that g1 and g2 are true in uv1v2.
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Remark 3. If ri : xi → yi {gi}, 1 ≤ i ≤ 2, are applicable in a configuration c and
c ⊆ c′ then they are not always applicable to c′. They are applicable to c′ when
all gi, 1 ≤ i ≤ 2, are true in c′.

Remark 4. If the rules r1, r2 are not applicable to cr1,r2 then there must be minimal
configurations c where the rules are applicable and they are minimal, i.e., there is
no c1, c1 ⊂ c where the rules are applicable. Such minimal configurations where
r1, r2 are applicable are of the form tcr1,r2 , where t ∈ A∗, t 6= λ.

In the following we introduce some theoretical results, characterising the iden-
tifiability or non-identifiability or rules and multisets of rules under certain condi-
tions. The complete proofs for these the results are given in [8].

Lemma 3. Two rules which are identifiable in a configuration c are identifiable in
any configuration containing c in which they are applicable.

Lemma 4. Two rules which are identifiable in a minimal configuration c are iden-
tifiable in any other minimal configuration c′ where they are applicable.

Corollary 1. Two rules r1 and r2 identifiable in a minimal configuration tcr1,r2 ,
t ∈ A∗, are identifiable in any configuration in which they are applicable.

Corollary 2. Two multisets of rules M1 and M2 identifiable in tcrM1
,rM2

, t ∈ A∗,
are identifiable in any configuration in which they are applicable.

From now on, we will always verify the identifiability (or non identifiability)
only for the smallest configurations associated with rules or multisets of rules and
will not mention these configurations anymore in the results to follow.

The applicability of two rules (multisets of rules) to a certain configuration
depends not only on the fact that there left hand sides (the concatenation of the
left hand sides) must be contained in the configuration and the guards must be
true, but takes into account the execution strategy.

Remark 5. For the async transition mode two multisets of rules (and two rules)
applicable in a configuration are also applicable in any other bigger configuration,
when the corresponding guards are true. For the seq mode this is true only for
multisets with one single element and obviously for simple rules. In the case of
the max mode the applicability of the multisets of rules (or rules) to various
configurations depends on the contents of the configurations and other available
rules. For instance if we consider a P system containing the rules r1 : a → a {≥
a}; r2 : ab→ abb {≤ b100}; r3 : bb→ c {≥ b2} and the configuration c = ab then in
c only r1 and r2 are applicable and identifiable, but in c1 = abb, containing c, r1 is
no longer applicable, but instead we have r2 and the multiset r1r3 applicable. In
ab101 r2 and any multiset containing it are not applicable due to the guard being
false; also r1 is no longer applicable, but r1r

55
3 is now applicable, due to maximal

parallelism.
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Remark 6. In the following results whenever we refer to arbitrary rules or multisets
of rules they are always meant to be applicable with respect to the transition mode.

Theorem 2. The rules r1 : x1 → y1 {g1} and r2 : x2 → y2 {g2}, are not identifi-
able if and only if they have the form r1 : uv1 → wv1 {g1} and r2 : uv2 → wv2 {g2}
and for any a ∈ A, a appears in at most one of v1 or v2.

Corollary 3. The rules r1 : uv1 → wz1 {g1} and r2 : uv2 → wz2 {g2}, such that
for any a ∈ A, a appears in at most one of v1 or v2, are identifiable if and only if
v1 6= z1 or v2 6= z2.

Theorem 3. If r1 and r2 are identifiable then rn1 and rn2 are identifiable, for any
n ≥ 1.

4 Testing identifiable kernel P systems

In order to generate test suites for a kernel P system using the X-machine test-
ing method, first a corresponding X-machine model needs to be constructed. As
discussed in Section 2, multi-compartment P systems can be flattened into one
membrane P systems and there are different ways to realise this [1, 7, 20]. Conse-
quently, we will illustrate the testing approach using an one-membrane kP system
model kΠ = (V, T, µ1, w1, R1, 1). The main idea is to construct an X-machine
Zt = (Qt, X, Φ,Ht, qt0, x0), corresponding to the computation tree of kΠ. As the
computation tree of the kP system might be infinite, we will consider only computa-
tions of maximum l steps, where l > 0 is a predefined integer. Let R1 = {r1, . . . , rn}
be the set of rules of kΠ. As only finite computations are considered, for every rule
ri ∈ R1 there will be some Ni such that, in any step, ri can be applied at most
Ni times, 1 ≤ i ≤ n. Thus the X-machine Zt = (Qt, X, Φ,Ht, qt0, x0) is defined as
follows:

• Qt is the set of nodes of the computation tree of maximum l steps;
• qt0 is the root node;
• X is the set of multisets with elements in V ;
• x0 is the initial multiset w1;
• Φ is the set of (partial) functions induced by the application of multisets of

rules ri11 . . . rinn , 0 ≤ i1 ≤ N1, . . . , 0 ≤ in ≤ Nn, i1 + . . . in > 0;
• Ht is the next-state function determined by the computation tree.

Remark 7. Note that, by definition, LAZ
is controllable, i.e. any sequence of pro-

cessing functions from the associated automaton AZ can be applied in the initial
data x0 (corresponding to the initial multiset w1). Intuitively a path in the DFCA
corresponds to a path in the computation tree of the kP system.

Remark 8. The set of (partial) functions, Φ, from the above definition is identifiable
(according to Definition 17) if and only if the corresponding multisets of rules are
pairwise identifiable (according to Definition 20).
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Example 3. Let us consider one compartment kP system kΠ1 = (V, V, µ1, w1,
R1, 1), where V = {a, b, c}, w1 = ab, and

R1 =

{
r1 : a→ b{≥ a∧ ≥ b} r2 : ab→ bc{≤ a∧ ≥ b}
r3 : c→ b{≥ b∧ ≤ c100} r4 : c→ cc{≤ c100}

}
Let us build the computation tree considering that rules are applied in the

maximally parallel mode. The initial configuration w1 = ab is at the root of the tree
(level 0 of the tree). Two computation steps are possible from the root: ab =⇒r1 b2

and ab =⇒r2 bc. Then the configurations b2 and bc are at the first level of the
tree. No rule can be applied in b2 (this is a terminal configuration of kΠ1), but
two computation steps exist form bc: bc =⇒r3 b2 and bc =⇒r4 bc2. The new
configurations produced represent the second level of the tree. Again, no rule can
be applied in b2, but there are three computation steps from bc2: bc2 =⇒r23 b3,
bc2 =⇒r3r4 b2c2 and bc2 =⇒r24 bc4. No rule can be applied in b3, but there are three
computation steps from b2c2 and five from bc4: b2c2 =⇒r23 b4, b2c2 =⇒r3r4 b3c2 and
b2c2 =⇒r24 b2c4; bc4 =⇒r43 b5, bc4 =⇒r33r4 b4c2, bc4 =⇒r23r

2
4 b3c4, bc4 =⇒r3r

3
4 b2c6

and bc4 =⇒r44 bc8. The configurations produced by these eight multisets of rules
represent the fourth level of the tree.

It can be easily checked that any two of the above multisets of rules are iden-
tifiable, according to Corollary 3, and consequently they produce different results
when applied to the same configuration – see above.

Let the upper bound on the number of computation steps considered be l = 4.
For this value of l, the rules r1 and r2 have been applied at most once, so N1 = 1
and N2 = 1, whereas rules r3 and r4 have been applied at most four times, so
N3 = 4 and N4 = 4. Therefore the type Φ of the X-machine Zt corresponding
to the computation tree is the set of partial functions induced by the multisets
ri11 r

i2
2 r

i3
3 r

i4
4 , 0 ≤ i1 ≤ 1, 0 ≤ i2 ≤ 2, 0 ≤ i3 ≤ 4, 0 ≤ i4 ≤ 4, i1 + i2 + i3 + i4 > 0.

The associated automaton AZt is as represented in Figure 1.

Let LAZt ⊆ Φ∗ be the language accepted by the associated automaton AZt . In
order to apply the test generation method presented in Section 2.3, an X-machine
Z whose associated automaton AZ is a DFCA for LAZt needs to be constructed
first.

Let ≤ be a total order on Qt such that q1 ≤ q2 whenever level(q1) ≤ level(q2)
and denote q1 < q2 if q1 ≤ q2 and q1 6= q2. In other words, the node at the superior
level in the tree is before the node at the inferior level; if the nodes are at the same
level then their order is arbitrarily chosen. Define P t = {q ∈ Qt | ¬∃q′ ∈ Qt · q′ ∼
q, q′ < q} and [q] = {q′ ∈ Qt | q′ ∼ q ∧ ¬∃q′′ ∈ P t · q′′ ∼ q′, q′′ < q} for every
q ∈ P t (i.e. [q] denotes the set of all states q′ for which q is the minimum state
similar to q′). Then we have the following result (the proof is given in [10]).

Theorem 4. Let Z = (Q,X,Φ,H, q0, x0), where Q = {[q] | q ∈ P t}, q0 = [qt0],
H([q], φ) = [Ht(q, φ)] for all q ∈ P t and φ ∈ Φ. Then AZ is a minimal DFCA for
LAZt .
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Fig. 1. The associated automaton AZt corresponding to the computation tree for kΠ1

and l = 4

Remark 9. Consider Zt as in the previous example. P t = {qt0, qt1, qt2, qt4, qt7}; [qt0] =
{qt0, qt8, qt9, qt10, qt11, qt12, qt13, qt14, qt15}, [qt1] = {qt1, qt3, qt5}, [qt2] = {qt2}, [qt4] = {qt4, qt6},
[qt7] = {qt7}. Then Z = (Q,X,Φ,H, q0, x0), where Q = {[qt0], [qt1], [qt2], [qt4], [qt7]} and
q0 = [qt0]. The associated automaton of Z is a minimal DFCA for LAZt and is as
represented in Figure 2.

Once the X-machine Z has been constructed the test generation process entails
the following steps:

1. Construct the sets S and W (proper state cover and characterisation
sets, respectively).
It can be easily remarked from Fig. 2. that λ, r1, r2, r2 r4, r2 r4 r

2
4 are the se-

quences of minimum length4 that reach [qt0], [qt1], [qt2], [qt4] and [qt7], respectively.

4 Notation: for rules r and r′, rr′ denotes the application of rules r and r′ in one single
step, whereas r r′ (separated by space) denotes the application of rule r in one step
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Fig. 2. The DFCA for LAZt

Consequently S = {r1, r2, r2 r4, r2 r4 r24} is a proper state cover of Z. Further-
more, since r1 distinguishes [qt0] from all remaining states and r3, r3r4 and r43
hold the same property for [qt2], [qt4] and [qt7], respectively, W = {r1, r3, r3r4, r43}
is a strong characterisation set of Z.

2. Determine the fault model of the IUT.
This entails establishing the transitions that a (possibly faulty) implementation
is capable to perform. For example, when the correct application of rules (in
the P system specification) is in the maximally parallel mode max, one fault
that we may consider is when the rules are applied in a less restrictive mode
such that the asynchronous mode async. Hence the notion of controllability
for P systems is defined by considering this, less restrictive, application mode.

Definition 21. A sequence of multisets of rules p = M1...Mm, with Mi ∈
R∗1, 1 ≤ i ≤ m, is said to be controllable if there exist configurations u0 =
w1, u1, . . . , um, ui ∈ V ∗, 0 ≤ i ≤ m, such that ui−1 =⇒Mi

FM ui, 1 ≤ i ≤
m, where u =⇒M

FM u′ denotes a computation step in the fault model from
configuration u to configuration u′ by applying the multiset of rules M .

followed by the application of rule r′ in the following step; the second notation is also
used for multisets of rules.
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Consider again the P system kΠ1 as in Example 3. Then ab =⇒r2 bc and
bc =⇒r4 bc2, but bc2 =⇒r4 bc3 does not hold since the rules of kΠ1 must
be applied in the maximally parallel mode. However, if we consider that in
the fault model of the IUT rules may be applied in the asynchronous mode,
the sequence r2 r4 r4 is controllable. The fault model is also determined by
the maximum number of states m + k that the IUT may have, where m is
the number of states of the X-machine Z and k ≥ 0 is a non-negative integer
estimated by the tester.

3. Construct an l-bounded conformance test suite.
This is Tk = t(Yk), where Yk = SΦ[k+ 1](W ∪ {λ})∩Φ[l] \ {λ} and t is a test
transformation of Z.
According to [4], the upper bound for the number of sequences in SΦ[k+ 1]W
is m2 · rk+1 and the total length of all sequences is not greater that m2 · (m+
k) · rk+1, where r is the number of elements of Φ. In particular, for k = 0,
the respective bounds are m2 · r and m3 · r. The increase in size produced by
replacing W with W ∪ {λ} in the above formula is negligible. Note that these
bounds refer to the worst case; in an average case, the size of Yk is much lower.
Furthermore, the size of t(Yk) is normally significantly lower than the size of
Yk since only the controllable sequences are in the domain of t.
The construction of Yk is straightforward, so we illustrate only the construction
of the test transformation t with an example. Consider again rule application
mode is maximal parallelism for kΦ and the asynchronous mode for the fault
model. Consider the sequences s0 = λ, s1 = r2, s2 = s1 r4, s3 = s2 r4, s4 =
s3 r4, s5 = s4 r1 and s6 = s5 r1. By rule (1) of Definition 16, t(s0) = x0 = ab.
As ab =⇒r2 bc, by rule (2) t(s1) = ab bc. Similarly, as bc =⇒r4 bc2, by rule
(2) t(s2) = ab bc bc2. On the other hand r4 cannot be applied in configuration
bc2 in the maximally parallel mode, but bc2 =⇒r4

FM bc3 (in the asynchronous
mode) and so, by rule (2), t(s3) = ab bc bc2 bc3. Furthermore, bc3 =⇒r4

FM bc4

and so, by rule (3) of Definition 16, t(s4) = t(s3) = ab bc bc2 bc3. As r1 cannot
be applied in bc4, by rule (4) t(s5) is undefined. Furthermore, by rule (5), t(s6)
is also undefined, so no test sequences will be generated for s5 and s6.

5 Conclusions

This paper presents a testing approach for kernel P systems that, under certain
conditions, ensures that the implementation conforms to the specification. The
methodology is based on the identifiable kernel P systems concept, which is es-
sential for testing, and has been introduced for one-compartment kP systems with
rewriting rules, but could be extended.
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