
P Systems: from Anti-Matter to Anti-Rules

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3, Mario J. Pérez-Jiménez4

1 Vladimir Andrunachievici Institute of
Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova
E-mail: artiom@math.md

2 TU Wien, Institut für Logic and Computation
Favoritenstraße 9–11, 1040 Wien, Austria
E-mail: rudi@emcc.at

3 IBISC, Université Évry, Université Paris-Saclay
23, boulevard de France, 91034 Évry, France
E-mail: sergiu.ivanov@univ-evry.fr

4 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
E-mail: marper@us.es

Summary. The concept of a matter object being annihilated when meeting its corre-
sponding anti-matter object is taken over for rule labels as objects and anti-rule labels
as the corresponding annihilation counterpart in P systems. In the presence of a corre-
sponding anti-rule object, annihilation of a rule object happens before the rule that the
rule object represents, can be applied. Applying a rule consumes the corresponding rule
object, but may also produce new rule objects as well as anti-rule objects, too. Compu-
tational completeness in this setting then can be obtained in a one-membrane P system
with non-cooperative rules and rule / anti-rule annihilation rules when using one of the
standard maximally parallel derivation modes as well as any of the maximally parallel
set derivation modes (i.e., non-extendable (multi)sets of rules, (multi)sets with maximal
number of rules, (multi)sets of rules affecting the maximal number of objects). When
using the sequential derivation mode, at least the computational power of partially blind
register machines is obtained.

1 Introduction

The basic model of P systems as introduced in [24] can be considered as a dis-
tributed multiset rewriting system, where all objects – if possible – evolve in par-
allel in the membrane regions and may be communicated through the membranes.
Overviews on the field of P systems can be found in the monograph [25] and the
handbook of membrane systems [26]; for actual news and results we refer to the

42 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

P systems webpage [28] as well as to the Bulletin of the International Membrane
Computing Society.

Computational completeness (computing any partial recursive relation on non-
negative integers) can be obtained with using cooperative rules or with cat-
alytic rules (possibly) together with non-cooperative rules. We recall that non-
cooperative rules have the form a → w, where a is a symbol and w is a multiset,
catalytic rules have the form ca → cw, where the symbol c is called the cata-
lyst, and cooperative rules have no restrictions on the form of the left-hand side.
Without additional control mechanisms, at least two catalysts are needed, see [16].
Using specific control mechanisms, as for example, rule labels or target agreement,
only one catalyst is needed, for example, see [14, 19, 20]. In [2, 1], another concept
to avoid cooperative rules is investigated: for any object a (matter), its anti-object
(anti-matter) a− is considered together with the corresponding annihilation rule
aa− → λ, which is assumed to exist in all membranes; this annihilation rule is
assumed to be a special non-cooperative rule having priority over all other rules in
the sense of weak priority (e.g., see [9], i.e., other rules then also may be applied if
objects cannot be bound by some annihilation rule any more). For spiking neural
P systems, the idea of anti-matter has been introduced in [23] with anti-spikes
as anti-matter objects. In [12] the power of anti-matter for solving NP-complete
problems is exhibited.

Although, as expected (for example, compare with the Geffert normal forms,
see [27]), the annihilation rules are rather powerful, it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with the
annihilation rules having weak priority, computational completeness can already
be obtained without using any catalyst, see [2, 1], whereas usually at least one
catalyst is needed even when using other control mechanisms, for example, see [2].

In this paper we now consider a rule label as an object itself which cannot evolve
as any other object in the system, but only has the task to make the rule applicable;
in some sense this can be seen as a variant of rule activation as introduced in P
systems with activation and blocking of rules, see [4]; for the concept of activation
and blocking of rules also see [3, 5]. Introducing the anti-rule object then can be
seen as a variant of blocking the corresponding rule. The main difference between
these two concepts – activation and blocking of rules in contrast to rule objects
and anti-rule objects – is that with activation and blocking of rules, rules can be
activated and blocked for specific time steps in the future, whereas the activation
of a rule by its rule object is immediate, and also blocking is immediate, but
active until the anti-rule object annihilates with the rule object, which may be an
unbounded number of steps in the future. When a rule is applied by consuming
its corresponding rule object is also not fixed and may heavily depend not only
on the applicability of the rule, but also on the derivation mode. For example,
in the sequential mode, several rule objects may compete for the rule each of
them represents to be executed; the sequence of applications may be crucial, as
in between an anti-rule object may appear and annihilate the rule object. Finally,
let us mention that the concepts of activation of rules and of rule objects already

P Systems: from Anti-Matter to Anti-Rules 43

have appeared in some different way in [13] embedded in an even more complex
setting.

We also have to emphasize that each copy of a rule object allows for exactly
one application of the corresponding rule it represents, i.e., we deal with multisets
of rules only applicable if the corresponding multiset of rule objects is present,
which restricts the set of applicable sets of multisets of rules in a given derivation
mode, especially in the maximally parallel derivation modes. This also means that
we have to deal with a subtle technical detail: We either may start with the set
of all applicable sets of multisets of rules, no matter which and how many rule
objects are present, then take out all the multisets of rules which conform with
the given derivation mode, and then only take those for which sufficient resources
of rule objects are available. On the other hand, we may also first take only those
multisets of rules for which there are sufficient resources of rule objects available,
take these as the set of applicable rule multisets and only afterwards apply the
condition for the derivation mode. Examples to explain these differences will be
given in Section 3.

After explaining some notions and definitions used in this paper in the next
section, in Section 3 we will define our new model of P systems with rule and
anti-rule objects as well the kind of rules, the derivation modes, and the halting
conditions used afterwards; moreover, some examples are given to illustrate the
new concept. In Section 4, we then establish our main results. We show that com-
putational completeness can even be obtained with one-membrane P systems using
non-cooperative rules and rule / anti-rule annihilation rules as well as one of the
standard maximally parallel derivation modes or maximally parallel set derivation
modes (i.e., non-extendable (multi)sets of rules, (multi)sets with maximal number
of rules, (multi)sets of rules affecting the maximal number of objects). When using
the sequential derivation mode, at least the computational power of partially blind
register machines is obtained. A summary of the results we obtained as well as an
outlook to future research topics conclude the paper.

2 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation is denoted by V ∗. The ele-
ments of V ∗ are called strings, the empty string is denoted by λ, and V ∗\{λ} is
denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occur-
rences of a symbol ai in a string x is denoted by |x|ai , while the length of a string x
is denoted by |x| =

∑
ai∈V |x|ai . The Parikh vector associated with x with respect

to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary language L
over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages

44 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

in FL is denoted by PsFL, while for families of languages over a one-letter (d-
letter) alphabet, the corresponding sets of non-negative integers (d-vectors with
non-negative components) are denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by 〈af(a1)1 , . . . , a
f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amnn 〉 or a string x having
(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amnn 〉 by the
string am1

1 . . . amnn is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦.

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [11] and [27].

Register machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

For useful results on the computational power of register machines, we refer to
[22].

In partially blind register machines, the SUB instruction has the form p :
(SUB(r), q): if the register r is not empty, it is decremented and the register
machine moves to state q, otherwise the machine crashes – the computation stops
in a non-halting configuration, yielding no result. Moreover, we require that valid
computations of a partially blind register machine have 0 in all non-output registers
in halting configurations.

P Systems: from Anti-Matter to Anti-Rules 45

3 P Systems with Rule and Anti-Rule Objects

Formally, a P system with anti-rules (a PARS for short) is a construct

Π =
(
V, T,H ∪H−, µ, w1, . . . , wm, R1, . . . , Rm, gH , f,=⇒Π,δ

)
where

• V is the alphabet of objects;
• T ⊆ V is the alphabet of terminal objects;
• H ∪H− is the alphabet of rule objects (H) and anti-rule objects (H−), respec-

tively; we also define VH := V ∪H ∪H−;
• µ is the hierarchical membrane structure (a rooted tree of membranes) with

the membranes uniquely labeled by the numbers from 1 to m;
• wi ∈ V ∗, 1 ≤ i ≤ m, is the initial multiset in membrane i;
• Ri, 1 ≤ i ≤ m, is a finite set of rules of type X assigned to membrane i; we

also define R =
⋃

1≤i≤m{(i, r) | r ∈ Ri};
• gH is a function assigning a rule from R to every rule object in H;
• f is the label of the membrane from which the result of a computation has to

be taken from (in the generative case) or into which the initial multiset has to
be given in addition to wf (in the accepting case),

• =⇒Π,δ is the derivation relation under the derivation mode δ.

The symbol X in “rules of type X” may stand for “cooperative”, “non-
cooperative”,“purely catalytic”, “catalytic”, etc., see Subsection 3.1.

A configuration is a list of the contents of each membrane region; a sequence
of configurations C1, . . . , Ck is called a computation in the derivation mode δ if
Ci=⇒Π,δCi+1 for 1 ≤ i < k. The derivation relation =⇒Π,δ is defined by the set of
rules in Π and the given derivation mode which determines the multiset of rules to
be applied to the multisets contained in each membrane also taking into account
the available rule objects, as we will explain in more detail in Subsection 3.4.

3.1 Standard Rule Variants

Non-cooperative rules have the form a → w, where a is a symbol and w is a
multiset, catalytic rules have the form ca→ cw, where the symbol c is called the
catalyst, and cooperative rules have no restrictions on the form of the left-hand
side. These types of rules will be denoted by ncoo (non-cooperative), pcat (purely
catalytic), and coo (cooperative); if both non-cooperative and catalytic rules are
allowed, we write cat (catalytic).

If in general a P system has more than one membrane, each symbol on the
right-hand side may have assigned a target where the symbol has to be sent after
the application of the rule, where the targets take into account the tree structure
of the membranes as follows:

here the symbol stays in the membrane where the rule is applied;
out the symbol is sent to the outer membrane, i.e., the membrane enclosing the

membrane where the rule is applied;

46 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

in the symbol is sent to an inner membrane, i.e., a membrane enclosed by the
membrane where the rule is applied;

inj the symbol is sent to the inner membrane labeled by j.

3.2 Derivation Modes

In general, the set of all multisets of rules applicable in a P system to a given con-
figuration C is denoted by Appl(Π,C) and can be restricted by imposing specific
conditions, thus yielding the following basic derivation modes (for example, see
[21] for formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule is applied;
• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable multiset of rules is applied;
• maximally parallel mode with maximal number of rules (maxrules): a non-

extendable multiset of rules of maximal possible cardinality is applied;
• maximally parallel mode with maximal number of objects (maxobjects): a non-

extendable multiset of rules affecting as many objects as possible is applied.

In [7], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, smax, smaxrules, and
smaxobjects (the sequential mode is already a set mode by definition):

• asynchronous set mode (abbreviated sasyn): at least one rule is applied, but
each rule at most once;

• maximally parallel set mode (smax): a non-extendable set of rules is applied;
• maximally parallel set mode with maximal number of rules (smaxrules): a

non-extendable set of rules of maximal possible cardinality is applied;
• maximally parallel set mode with maximal number of objects (smaxobjects): a

non-extendable set of rules affecting as many objects as possible is applied.

Let us denote the set of all multisets (possibly only sets) of rules applicable
in a (tissue) P system Π to a given configuration C in the derivation mode δ by
Appl(Π,C, δ). We immediately observe that Appl(Π,C, asyn) = Appl(Π,C).
To collect the set and multiset derivation modes, we use the following notations:

DS = {sequ, sasyn, smax, smaxrules, smaxobjects} and
DM = {asyn,max,maxrules,maxobjects}.

3.3 Halting Conditions

Besides the standard total halting with no (multi)set of rules being applicable any
more to the current configuration, some more variants of halting conditions have
been considered in the literature:

total halting (H) the common halting strategy where the computation stops
with no (multi)set of rules being applicable any more

P Systems: from Anti-Matter to Anti-Rules 47

unconditional halting (u) the result of a computation can be taken from ev-
ery configuration derived from the initial one (possibly only taking terminal
results)

partial halting (h) the set of rules R is partitioned into disjoint subsets R1 to
Rh, and a computation stops if there is no multiset of rules applicable to the
current configuration which contains a rule from every set Rj , 1 ≤ j ≤ h

halting with states (s) the configuration with which a derivation may stop
must fulfill a recursive condition (which corresponds with a final state)

The variant of unconditional halting was introduced in [10]. Partial halting, for
example, was investigated in [6, 8, 18], using the membranes for partitioning the
rules. Formal definitions for the halting conditions H,h, s can be found in [21].

In the description for P systems, the derivation relation under the derivation
mode δ, =⇒Π,δ, is extended by the halting condition, i.e., we then write =⇒Π,δ,β

for β ∈ {H,h, u, s}. By default, β is understood to be the total halting H and
then usually omitted.

3.4 Rule and Anti-Rule Objects

In the set of rules R, the rules on the left-hand side may only contain symbols from
V , whereas on the right-hand side of a rules any symbol from VH may appear.

In any computation step of a PARS Π only a multiset R′ of rules can be applied
such that for each (copy of a) rule r a rule object h with g(h) = r is present in the
current configuration. With the application of a rule r, a copy of a rule object h
with g(h) = r is consumed, i.e., the number of rule objects in the sense of multisets
is important for the applicability of a multiset of rules.

As we allow anti-rule objects to be generated, too, we implicitly assume the
rule / anti-rule annihilation rule hh− → λ to be present in every membrane, for
every h ∈ H. Before the next derivation step as described above can be carried
out, all such annihilation rules have to be executed, as we assume them to have
(weak) priority over all other rules.

As already mentioned in Section 1, each copy of a rule object allows for exactly
one application of the corresponding rule it represents, i.e., we deal with multisets
of rules only applicable if the corresponding multiset of rule objects is present,
which restricts the set of applicable sets of multisets of rules in a given derivation
mode, especially in the maximally parallel derivation modes.

Hence, there are two possible ways how to define the applicable multisets of
rules applicable to a given configuration; we observe that a configuration may
contain elements from VH , not only V , but as the rule / anti-rule annihilation
rules hh− → λ have weak priority, no pair hh− can be present any more:

starting with applicable multisets (δa) We start with the set of all applicable sets
of multisets of rules, no matter which and how many rule objects are present,
then take out all the multisets of rules which conform with the given derivation

48 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

mode, and then only take those for which sufficient resources of rule objects
are available.

starting with available rule objects (δr) We first take only those multisets of
rules for which there are sufficient resources of rule objects available, take
these as the set of applicable rule multisets and only afterwards apply the
condition for the derivation mode.

Which variant we choose for a given derivation mode, will be indicated by a
subscript a or r to δ, i.e., we write δa and δr, respectively.

The language generated by the PARS Π is the set of all terminal multisets
which can be obtained in the output membrane f starting from the initial config-
uration C1 = (w1, . . . , wm) using the derivation mode δα, α ∈ {a, r}, in a halting
computation using the halting condition β, i.e.,

Lgen,δα,β (Π) =
{
C(f) ∈ T ◦ | C1

∗
=⇒Π,δα,β C ∧ haltingδα,β(C)

}
,

where C(f) stands for the multiset contained in the output membrane f of the
final configuration C and haltingδα,β(C) indicates that C is a halting configuration
with respect to the halting condition β when using δα.

The family of languages of multisets generated by PARSs of type X with at
most n membranes in the derivation mode δα using the halting condition β is
denoted by Psgen,δα,βOPn (X).

We may also consider PARSs as accepting mechanisms: in membrane f , we add
the input multiset w0 to wf in the initial configuration C1 = (w1, . . . , wm) thus
obtaining C1[w0] = (w1, . . . , wfw0, . . . , wm); the input multiset w0 is accepted if
there exists a halting computation in the derivation mode δα starting from C1[w0],
i.e.,

Lacc,δα,β (Π) =
{
w0 ∈ T ◦ | ∃C :

(
C1[w0]

∗
=⇒Π,δα,β C ∧ haltingδα,β(C)

)}
.

Then the family of languages of multisets accepted by PARSs of type X with at
most n membranes in the derivation mode δα using the halting condition β is
denoted by Psacc,δα,βOPn (X).

We finally mention that PARSs can also be used to compute functions and
relations, with using f both as input and output membrane or even using two
different membranes for the input and the output. Yet in this paper we will mainly
focus on the generating case.

3.5 Flattening

As many variants of P systems can be flattened to only one membrane, see [17], we
often may assume the simplest membrane structure of only one membrane which
in effect reduces the P system to a multiset processing mechanism, and, observing
that f = 1, in what follows we then will use the reduced notation

P Systems: from Anti-Matter to Anti-Rules 49

Π =
(
V, T,H ∪H−, w,R, gH ,=⇒Π,δα,β

)
for a PARS with only one membrane, for which the definitions for the language
generated by Π and the language accepted by Π can be written in an easier way,
i.e.,

Lgen,δα,β (Π) =
{
v ∈ T ◦ | w ∗

=⇒Π,δα,β v ∧ haltingδα,β(v)
}

and

Lacc,δα,β (Π) =
{
w0 ∈ T ◦ | ∃v :

(
ww0

∗
=⇒Π,δα,β v ∧ haltingδα,β(v)

)}
.

The family of languages of multisets generated by one-membrane PARSs of
type X in the derivation mode δα using the halting condition β is denoted by
Psgen,δα,βOP (X).

The family of languages of multisets accepted by one-membrane PARSs of
type X in the derivation mode δα using the halting condition β is denoted by
Psacc,δα,βOP (X).

The following example illustrates that the two variants δa and δa need not yield
the same results:

Example 1. Take the PARS

Π =
(
V = {a}, T = {a}, H ∪H−, w = ar,R = {a→ aar}, gH ,=⇒Π,δα,u

)
with H = {r} and gH = {(r, a → aar)}. Then, with every application of the rule
r : a→ aar we get one more symbol a, i.e., for α ∈ {a, r}, we have

{a}+ = Lgen,sequα,u (Π) = Lgen,smaxα,u (Π)

= Lgen,maxr,u (Π) .

But on the other hand, Lgen,maxa,u (Π) = {a, aa}, because after the first applica-
tion of rule r we obtain the configuration aar, which is a terminal one, as the only
applicable multiset of rules which is not extendable would contain two copies of
the rule a→ aar, yet only one corresponding rule object r is available.

The following example shows that different results are obtained with different
derivation modes δ:

Example 2. Take the PARS

Π =
(
V = {a}, T = {a}, H ∪H−, w = ar,R = {a→ aarr}, gH ,=⇒Π,δα,u

)
with H = {r} and gH = {(r, a→ aarr)}. Then, with every application of the rule
r : a→ aarr we double the number of symbols a when using a maximally parallel
derivation mode, i.e., for α ∈ {a, r}, we have

Lgen,δα,u (Π) =
{
a2
n

| n ≥ 0
}

50 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

for any δ ∈ {max,maxrules,maxobjects}, because now the number of rule objects r
grows in the same way as the number of symbols a. But on the other hand, we still
get Lgen,sequα,u (Π) = {a}+, because in every derivation step the rule r : a→ aarr
can only be applied once, although the number of rule objects grows in a similar
way as the number of symbols a, i.e., we obtain a sequence of configurations anrn,
n ≥ 1, from which we extract the terminal results an, n ≥ 1.

4 Results

As our first result, we will show that with the sequential derivation mode PARSs
at least are as powerful as partially blind register machines.

Afterwards, computational completeness will be established for PARSs working
in the derivation modes maxr and smaxr, smaxa.

4.1 Sequential PARSs

In order to easily comply with the final condition that in halting computations of
partially blind register machines all non-output registers should be zero, for the
PARSs in the following theorem we use halting with states, where the final states
are defined in such a way that the PARS can only halt with yielding a result if only
terminal symbols are present any more. Now let NPBRM and PsPBRM denote
the families of sets of multisets and vectors of multisets, respectively, generated by
partially blind register machines.

Theorem 1. For any Y ∈ {N,Ps} and α ∈ {a, r},

Y PBRM ⊆ Ygen,sequα,sOP (ncoo).

Proof. Let M = (m,B, l0, lh, P) be a partially blind register machine; we assume
the output registers to be the first k ones. We now construct a PARS Π which
simulates (the computations of) M ; the contents of register r is represented by
the number of copies of symbols ar:

Π =
(
V, T,H ∪H−, w,R, gH ,=⇒Π,sequα,s

)
where

• V = {aj | 1 ≤ j ≤ m} ∪ {s,#};
• T = {aj | 1 ≤ j ≤ k};
• H = B ∪ B′SUB ∪ {l#}, i.e., the rule objects are the instruction labels in B,

their primed variants, but only for the SUB-instructions, i.e.,

B′SUB = {l′1 ∈ B | l1 : (SUB (r) , l2) ∈ P},

and the label l# for the trap rule s→ #; we also define VH := V ∪H ∪H−;

P Systems: from Anti-Matter to Anti-Rules 51

• w = l0s, i.e., we start with the symbol s and the rule object l0 representing
the initial instruction.

The instructions of M are simulated by the following rules in R; we will write
l : r to both indicate the rule r and the label l, having assigned the rule r by the
function gH .

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules l1 : s→ arl2 and l1 : s→ arl3.

• l1 : (SUB (r) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ r ≤ m.
As labeled rule common for the simulations of all SUB-instructions, we have
l# : s→ # and the rule / anti-rule annihilation rule l#l#

− → λ.

The application of the rule l# : s → # traps the whole computation, as #
is no terminal symbol and thus any configuration containing the trap symbol
cannot fulfill the final state condition.
The decrement case for instruction l1 is simulated by the rules
l1 : s→ sl′1l# generating the rule objects l′1 and l#, and

l′1 : ar → l2l#
−, which guarantees a correct simulation of a possible decre-

ment instruction in case register r is not empty (and also eliminates the rule
object l# by generating its anti-rule object l#

−).
If register r is empty, then the application of the rule labeled with l# generating
the trap symbol # is enforced, which can only be avoided if register r is not
empty and the rule labeled with l′1 can be applied instead.

• lh : HALT . Simulated by lh : s→ λ.

When the computation in M halts, the state symbol s is removed, and no fur-
ther rules can be applied provided the simulation of a valid computation in M has
been carried out correctly, i.e., if no trap symbols # are present in this situation,
which then guarantees that the halting condition is fulfilled. The terminal symbols
in the skin membrane represent the result computed by M . ut

In the preceding proof we have taken advantage of the halting condition with
final states guaranteeing to take only terminal results. Yet we can also take the
standard total halting, but paying the price with having rule objects remaining in
the halting computations:

Theorem 2. For any Y ∈ {N,Ps} and α ∈ {a, r},

Y PBRM ⊆ Ygen,sequα,HOP (ncoo).

Proof. As in the preceding proof we simulate a partially blind register machine
M = (m,B, l0, lh, P), where we assume the output registers to be the first k ones.

52 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

We then construct a PARS Π ′ which simulates (the computations of) M , where
Π ′ is obtained from Π as constructed in the proof of Theorem 1 by extending it
in the following way:

Π ′ =
(
V, T,H ′ ∪H ′−, w,R′, gH′ ,=⇒Π,sequα,H

)
where

• V = {aj | 1 ≤ j ≤ m} ∪ {s,#};
• T = {aj | 1 ≤ j ≤ k};
• H ′ = B ∪B′SUB ∪ {l#, l′#} ∪Br, i.e., the rule objects are the instruction labels

in B, their primed variants, but only for the SUB-instructions, i.e.,

B′SUB = {l′1 ∈ B | l1 : (SUB (r) , l2) ∈ P},

the label l# for the trap rule s → #, as well as, in addition now, the labels
in Br = {lj,# | k + 1 ≤ j ≤ m} needed for the final zero check and the
label l′#, which is needed for the additional trap rule # → #; we also define

VH′ := V ∪H ′ ∪H ′−;
• w = l0s, i.e., we start with the symbol s and the rule object l0 representing

the initial instruction.

For simulating the instructions of M we take all rules in R′ constructed as
follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules l1 : s→ arl2 and l1 : s→ arl3.

• l1 : (SUB (r) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ r ≤ m.
As labeled rule common for the simulations of all SUB-instructions, we have
l# : s→ # and the rule / anti-rule annihilation rule l#l#

− → λ.

The application of the rule l# : s→ # traps the whole computation by intro-
ducing the trap symbol #.
The decrement case for instruction l1 is simulated by the rules
l1 : s→ sl′1l# generating the rule objects l′1 and l#, and

l′1 : ar → l2l#
−, which guarantees a correct simulation of a possible decre-

ment instruction in case register r is not empty (and also eliminates the rule
object l# by generating its anti-rule object l#

−).
If register r is empty, then the application of the rule labeled with l# generating
the trap symbol # is enforced, which can only be avoided if register r is not
empty and the rule labeled with l′1 can be applied instead.

• lh : HALT .
Instead of lh : s→ λ we now use the final rule lh : s→ l′#lk+1,# . . . lm,#, where
lj,# : aj → #, k+ 1 ≤ j ≤ m, introduces the trap symbol #, if any of the non-
output registers is not empty when lh is reached. If at some moment the trap
symbol is introduced, an infinite (non-halting) derivation finally is guaranteed
by the rule l′# : #→ #l′#.

P Systems: from Anti-Matter to Anti-Rules 53

When the computation in M halts, the state symbol s is removed, and no
further rules can be applied provided the simulation of a valid computation in
M has been carried out correctly, i.e., if no trap symbols # are present in this
situation, AND the final zero test is successful, i.e., none of the rules lj,# : aj → #,
k + 1 ≤ j ≤ m is applicable in the step after the application of the final rule
lh : s→ l′#lk+1,# . . . lm,#.

Only the terminal symbols in the skin membrane represent the result computed
by M . ut

In the proof of Theorem 1 we needed the anti-rule object l#
− and the rule / anti-

rule annihilation rule l#l#
− → λ to finally obtain a clean result without any rule

object. Yet as in the construction of the PARS in Theorem 2 we anyway get
rule objects remaining in the final configuration we need not use this anti-rule
object l#

− and the corresponding rule / anti-rule annihilation rule l#l#
− → λ for

the PARS Π ′ constructed in the proof of Theorem 2 any more; the remaining
technical details are left to the interested reader.

Denoting a PARS not needing anti-rule objects as well as the corresponding
rule / anti-rule annihilation rules by PRS and indicating this by writing α0 instead
of α, we immediately may state the following result:

Corollary 1. For any Y ∈ {N,Ps} and α ∈ {a, r},

Y PBRM ⊆ Ygen,sequα0 ,HOP (ncoo).

We remark that the PARSs in Examples 1 and 2 in fact also are only using
rule objects and thus are PRSs only.

It remains a challenging open question if we can go beyond Y PBRM when
using the sequential derivation mode and non-cooperative rules.

4.2 Computational Completeness

We now show that PARSs characterize the families NRE and PsRE, respectively.
The main proof idea – as used very often in the area of P systems – is to simulate
(the computations of) register machines, as carried out in a similar way in [1] for
P systems with anti-matter.

Theorem 3. For any Y ∈ {N,Ps} and γ ∈ {gen, acc},

Yγ,δr,HOP (ncoo) = Y RE

for any δ ∈ {max,maxrules,maxobjects}.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We now construct a PARS
Π which simulates (the computations of) M ; the contents of register r is repre-
sented by the number of copies of symbols ar:

54 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

Π ′ =
(
V, T,H ∪H−, w,R, gH ,=⇒Π,sequα,H

)
where

• V = {aj | 1 ≤ j ≤ m} ∪ {s};
• T = {aj | 1 ≤ j ≤ k};
• H = B ∪ B̃ ∪Br, where

B̃ = {l′1, l′′1 | l1 ∈ B, l1 : (SUB (r) , l2, l3) ∈ P} and
Br = {lj,l1 | l1 ∈ B, l1 : (SUB (r) , l2, l3) ∈ P, and 1 ≤ r ≤ m};

we also define VH := V ∪H ∪H−;
• w = l0s, i.e., we start with the symbol s and the rule object l0 representing

the initial instruction.

The instructions of M are simulated by the following rules in R (we emphasize
that by definition, for all rule objects l ∈ H also the anti-rule objects l− are part
of the PARS Π as well as all the corresponding rule / anti-rule annihilation rules
l l− → λ are in R):

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules l1 : s→ arl2 and l1 : s→ arl3.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.

We start the simulation by using the rule
l1 : s→ sl′1lr,l1 and then possibly use the two rules

l′1 : s→ sl′′1 and lr,l1 : ar → l2l
′′
1
−

.

If register r is not empty, then lr,l1 : ar → l2l
′′
1
−

can be applied, at the same
time generating the label l2 to continue the computation after the successful
simulation of the decrement case and eliminating the rule object l′′1 by gener-
ating its anti-rule object l′′1

−
.

In case the register is empty, the rule object l′′1 is still present in the next
derivation step and correctly ends the simulation of the zero test case with
l′′1 : s→ slr,l1

−l3,
at the same time eliminating the rule object lr,l1 by generating the correspond-
ing anti-rule object lr,l1

−.

• lh : HALT . Simulated by lh : s→ λ.

When the computation in M halts, the symbol s is removed, and no further
rules can be applied; as the simulation has been carried out correctly, the terminal
symbols in the skin membrane at the end of a halting computation represent the
result computed by M .

We finally observe the important fact that Π simulates the SUB-instructions
of M in a deterministic way, i.e., in the accepting case the simulation of a deter-
ministic register machine is deterministic. ut

P Systems: from Anti-Matter to Anti-Rules 55

In the maximally parallel derivation modes δ we can only use the variant δr,
because in case that more than one object ar is present, we still want only one
ar to be erased in the decrement case, which is guaranteed by having only one
rule object lr,l1 , whereas without the restriction for the presence of rule objects,
this rule would be used for every copy of ar. On the other hand, in any of the set
maximally derivation modes δ already the definition of the mode guarantees that
this rule can only be applied once; hence, using the same construction as in the
proof of Theorem 3, we immediately get the corresponding result for all δr and δa
in case of the maximally parallel set derivation modes:

Corollary 2. For any Y ∈ {N,Ps}, α ∈ {a, r}, and γ ∈ {gen, acc},

Yγ,δα,HOP (ncoo) = Y RE

for any δ ∈ {smax, smaxrules, smaxobjects}.

5 Conclusion

In this paper we have taken over the idea of matter and anti-matter objects in P
systems to P systems with rule objects and anti-rule objects. For each rule to be
applied, a rule object must be present, which is consumed by the application of
the rule. Whenever a rule object h meets its anti-rule object h− the rule / anti-rule
annihilation rule hh− → λ, independent from the underlying derivation mode, has
to be applied before the next derivation step is executed.

The use of anti-rule objects and the corresponding rule / anti-rule annihilation
rules allows for the simulation of register machines with only non-cooperative rules
and any of the maximally (set) derivation modes. In the sequential mode, non-
cooperative rules together with rule objects, but even without anti-rule objects and
the corresponding rule / anti-rule annihilation rules at least allow for the simulation
of partially blind register machines. Whether we could obtain more, remains as a
challenge for future research.

In that sense, anti-rule objects (and the corresponding rule / anti-rule anni-
hilation rules) may also constitute a frontier of tractability as it was shown for
anti-matter, for example, see [12]. Investigating these kinds of complexity issues is
also a project for future research.

In this paper, we have only investigated some of the possible combinations
of derivation modes and halting conditions. Considering other combinations of
derivation modes and halting conditions as well as other kinds of rules, for example,
insertion, deletion, and substitution, is a promising topic for the future, too.

Another concept that can be added to the model of P systems with anti-rule
objects is to use decaying objects as in [15], but only for the rule objects and the

56 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

anti-rule objects. A rule object decaying in t time steps means that it can only
activate the application of the rule it stands for during the next t derivation steps,
whereafter the rule object vanishes even without the application of the rule / anti-
rule annihilation rule.

Acknowledgements

The ideas for this paper came up in the inspiring atmosphere of the Brainstorming
Week on Membrane Computing in Sevilla this year.

References

1. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M.,
Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing –
15th International Conference, CMC 2014, Prague, Czech Republic, August 20–22,
2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8961, pp.
66–85. Springer (2014). https://doi.org/10.1007/978-3-319-14370-5 5

2. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter
in membrane systems. In: Maćıas-Ramos, L.F., Mart́ınez-del-Amor, M.A.,
Păun, Gh., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the
Twelfth Brainstorming Week on Membrane Computing. pp. 1–26 (2014),
http://www.gcn.us.es/files/12bwmc/001 bwmc2014AntiMatter.pdf

3. Alhazov, A., Freund, R., Ivanov, S.: Introducing the concept of activation and block-
ing of rules in the general framework for regulated rewriting in sequential grammars.
In: Proceedings of BWMC 2018 (2018)

4. Alhazov, A., Freund, R., Ivanov, S.: P systems with activation and blocking of rules.
In: Stepney, S., Verlan, S. (eds.) Unconventional Computation and Natural Com-
putation – 17th International Conference, UCNC 2018, Fontainebleau, France, June
25-29, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10867, pp. 1–15.
Springer (2018). https://doi.org/10.1007/978-3-319-92435-9 1

5. Alhazov, A., Freund, R., Ivanov, S.: Sequential grammars with activation and
blocking of rules. In: Machines, Computations, and Universality – 8th Inter-
national Conference, MCU 2018, Fontainebleau, France, June 28-30, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10881, pp. 51–68 (2018).
https://doi.org/10.1007/978-3-319-92402-1 3

6. Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial halting in P systems us-
ing membrane rules with permitting contexts. In: Durand-Lose, J., Margenstern,
M. (eds.) Machines, Computations, and Universality. pp. 110–121. Springer, Berlin,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74593-8 10

7. Alhazov, A., Freund, R., Verlan, S.: P systems working in maximal variants of the set
derivation mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.)
Membrane Computing – 17th International Conference, CMC 2016, Milan, Italy,
July 25-29, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10105, pp. 83–102. Springer (2017). https://doi.org/10.1007/978-3-319-54072-6 6

8. Alhazov, A., Oswald, M., Freund, R., Verlan, S.: Partial halting and minimal par-
allelism based on arbitrary rule partitions. Fundam. Inform. 91(1), 17–34 (2009).
https://doi.org/10.3233/FI-2009-0031

P Systems: from Anti-Matter to Anti-Rules 57

9. Alhazov, A., Sburlan, D.: Static sorting P systems. In: Ciobanu, G., Pérez-Jiménez,
M.J., Păun, Gh. (eds.) Applications of Membrane Computing, pp. 215–252. Natural
Computing Series, Springer (2006). https://doi.org/10.1007/3-540-29937-8 8

10. Beyreder, M., Freund, R.: Membrane systems using noncooperative rules with un-
conditional halting. In: Corne, D.W., Frisco, P., Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing. pp. 129–136. Springer, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-95885-7 10

11. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
(1989), https://www.springer.com/de/book/9783642749346

12. Dı́az-Pernil, D., Peña-Cantillana, F., Alhazov, A., Freund, R., Gutiérrez-Naranjo,
M.A.: Antimatter as a frontier of tractability in membrane computing. Fundam.
Inform. 134(1–2), 83–96 (2014). https://doi.org/10.3233/FI-2014-1092

13. Freund, R.: Generalized P-Systems. In: Ciobanu, G., Păun, Gh. (eds.) Fundamentals
of Computation Theory, 12th International Symposium, FCT ’99, Iaşi, Romania,
August 30 – September 3, 1999, Proceedings. Lecture Notes in Computer Science,
vol. 1684, pp. 281–292. Springer (1999)

14. Freund, R.: Purely catalytic P systems: Two catalysts can be sufficient for
computational completeness. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Ro-
gozhin, Yu. (eds.) CMC14 Proceedings – The 14th International Conference on
Membrane Computing, Chişinău, August 20–23, 2013. pp. 153–166. Institute of
Mathematics and Computer Science, Academy of Sciences of Moldova (2013),
http://www.math.md/cmc14/CMC14 Proceedings.pdf

15. Freund, R.: (Tissue) P systems with decaying objects. In: Csuhaj-Varjú, E., Ghe-
orghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) Membrane Computing –
13th International Conference, CMC 2012, Budapest, Hungary, August 28–31, 2012,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 7762, pp. 1–25.
Springer (2013)

16. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330(2),
251–266 (2005). https://doi.org/10.1016/j.tcs.2004.06.029

17. Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flatten-
ing in (tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu.,
Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, Lecture Notes in Computer
Science, vol. 8340, pp. 173–188. Springer (2014). https://doi.org/10.1007/978-3-642-
54239-8 13

18. Freund, R., Oswald, M.: Partial halting in P systems. Int. J. Found. Comput. Sci.
18(6), 1215–1225 (2007). https://doi.org/10.1142/S0129054107005261

19. Freund, R., Oswald, M.: Catalytic and purely catalytic P automata: control mecha-
nisms for obtaining computational completeness. In: Bensch, S., Drewes, F., Freund,
R., Otto, F. (eds.) Fifth Workshop on Non-Classical Models for Automata and Ap-
plications – NCMA 2013, Ume̊a, Sweden, August 13 – August 14, 2013, Proceedings.
books@ocg.at, vol. 294, pp. 133–150. Österreichische Computer Gesellschaft (2013)

20. Freund, R., Păun, Gh.: How to obtain computational completeness in P systems with
one catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013. EPTCS,
vol. 128, pp. 47–61 (2013). https://doi.org/10.4204/EPTCS.128.13

21. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleft-
herakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane

58 A. Alhazov, R. Freund, S. Ivanov, and M.J. Pérez-Jiménez

Computing, Lecture Notes in Computer Science, vol. 4860, pp. 271–284. Springer
(2007). https://doi.org/10.1007/978-3-540-77312-2 17

22. Minsky, M.L.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

23. Pan, L., Păun, Gh.: Spiking neural P systems with anti-matter.
International Journal of Computers, Communications & Con-
trol 4(3), 273–282 (2009). https://doi.org/10.15837/ijccc.2009.3.2435,
http://univagora.ro/jour/index.php/ijccc/article/download/2435/901

24. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693

25. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002).
https://doi.org/10.1007/978-3-642-56196-2

26. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

27. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997).
https://doi.org/10.1007/978-3-642-59136-5

28. The P Systems Website. http://ppage.psystems.eu/

