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Summary. A single Turing machine can solve decision problems with an infinite number
of instances. On the other hand, in the framework of membrane computing, a “solution”
to an abstract decision problem consists of a family of membrane systems (where each
system of the family is associated with a finite set of instances of the problem to be
solved). An interesting question is to analyze the possibility to find a single membrane
system able to deal with the infinitely many instances of a decision problem.

In this context, it is fundamental to define precisely how the instances of the problem
are introduced into the system. In this paper, two different methods are considered:
pre-computed (in polynomial time) resources and non-treated resources.

An extended version of this work will be presented in the 20th International Confer-
ence on Membrane Computing.

1 Introduction

In the 17th Brainstorming Week on Membrane Computing, an apparently innocent
problem was presented by the authors: the ONLY-ONE-OBJECT problem. The goal
is to build a system able to distinguish whether in a given region, at a given
moment, there is only one copy of an object, or if the multiplicity of the object
is strictly greater than one. Besides, the notion of efficient solvability by means
of a single recognizer polarizationless P system with active membranes, without
dissolution rules and using division for elementary and non-elementary membranes,
was proposed. Following a reasoning based on the dependency graph technique, a
negative answer to the previous question was concluded (i.e. the problem is not
solvable in the proposed framework).

In some sense, the previous question links up with others that were proposed by
P. Sośık [17], which raise the possibility of being able to solve P-complete problems
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or NP-complete problems by means of a single membrane system. Specifically,
two “open problems” were “formulated” in [17], expressed in an informal way as
follows:

• Open Problem 1. Is there any known standard model of P system capable of
solving a P-complete problem in polynomial time without the use of families,
i.e., all instances are solved by the same P systems?

• Open Problem 2. How to design a natural (not much “extraordinary”) model
of P system capable of solving an NP-complete problem in polynomial time
without the use of families?

Of course, these questions should be expressed in a formal way and their answers
will depend on the definitions given about what solving a decision problem through
a single membrane system means.

For instance, two possible definitions could be considered according to the
way of entering the input inside the membrane system: (a) by using precomputed
resources (that is, waiting for a polynomial time prior to the initial step of the
computation, to calculate which is the input multiset that has to be provided
to the system); or (b) by directly introducing the input multiset without any
preprocessing, that is, free of external resources.

For a comprehensive introduction to membrane systems, we refer the reader
to [12, 15].

2 The complexity class PMC1p
R

First, let us define a solution to a decision problem through a single membrane
system allowing the possibility to use (external) precomputed resources for provid-
ing the input multiset to the system. In other words, we assume that there is an
available device able to execute the function that computes the input multiset,
and this process should be performed before the computation of the membrane
system starts.

Definition 1. Let R be a class of recognizer membrane system. Let X = (IX , θX)
be a decision problem. We say that problem X is solvable in polynomial time by a
single membrane system Π from R with precomputed resources, denoted by X ∈
PMC1p

R , if the following hold:

• There exists a polynomial encoding cod from X to Π providing a “reasonable
encoding scheme” which maps problem instances into the multisets describing
them [3]; that is, there exists a polynomial time computable function, cod, whose
domain is IX such that for every instance u ∈ IX , cod(u) is a multiset over
the input alphabet of Π.

• The system Π is polynomially bounded with regard to (X, cod); that is, there
exists a polynomial p(r) such that for each instance u ∈ IX , every computation
of the system Π with input multiset cod(u) performs at most p(|u|) steps.
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• The system Π is sound with regard to (X, cod); that is, for each instance u ∈
IX , if there exists an accepting computation of the system Π with input multiset
cod(u) then θX(u) = 1.

• The system Π is complete with regard to (X, cod); that is, for each instance
u ∈ IX such that θX(u) = 1, every computation of the system Π with input
multiset cod(u) is an accepting computation.

In this definition, the input multiset that is allocated into the initial configuration
of the system is precomputed by means of a polynomial-time computable function.

Proposition 1. If R is a class of recognizer membrane systems, then

P ⊆ PMC1p
R ⊆ PMCR

Proof. In order to show that P ⊆ PMC1p
R , let X = (IX , θX) be a decision problem

in class P. Let us consider the deterministic recognizer (cell-like) membrane system
Π = {Γ,Σ, µ,M1,R, iin} of degree 1 defined as follows:

• Γ = Σ = {yes, no}.
• µ = [ ]1.
• M1 = ∅
• R = {[ yes ]1 → yes [ ]1; [ no ]1 → no [ ]1}
• iin = 1.

Let us consider cod as the map whose domain is IX defined as follows: for every
u ∈ IX , cod(u) = {yes} if θX(u) = 1, and cod(u) = {no}, otherwise. Since X ∈ P,
cod is a polynomial-time function. Then, we have:

• The system Π is polynomially bounded with regard to (X, cod): for every in-
stance u ∈ IX , the computation of Π with input multiset cod(u) performs 1
transition step.

• For every instance u ∈ IX , the computation of the systemΠ with input multiset
cod(u) is an accepting computation if and only if θX(u) = 1.

This definition can be easily adjusted for any class of recognizer membrane
systems R, in such a way that we have X ∈ PMC1p

R . Then, we conclude that

P ⊆ PMC1p
R .

In order to show that PMC1p
R ⊆ PMCR, let X = (IX , θX) be a decision

problem such that X ∈ PMC1p. Let Π ′ a membrane system from R solving X
according to Definition 1, being cod′ a polynomial encoding from X to Π associated
with that solution. Let us consider the family Π = {Π(t) | t ∈ N} defined as follows
Π(t) = Π ′, for each t ∈ N. Let us consider the polynomial encoding (cod, s) from
the problem X to the family Π defined as follows: cod = cod′ and s(u) = 0, for
each u ∈ IX . Then it is easy to check that the family Π is polynomially uniform
by Turing machines, polynomially bounded with regard to (X, cod, s), and sound
and complete with regard to (X, cod, s). Thus, X ∈ PMCR.

�
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3 The complexity class PMC1f
R

The second definition refers to the case in which the input multiset is directly
introduced inside the system as it is (“free” of external dependencies or resources),
and thus the input alphabet should be chosen so that the system is able to “read”
the instances of the problem to be solved.

Definition 2. Let R be a class of recognizer membrane systems. Let X = (IX , θX)
be a decision problem such that IX is a language over a finite alphabet ΣX . We
say that problem X is solvable in polynomial time by a single membrane system Π
from R free of external resources, denoted by X ∈ PMC1f

R , if the following hold:

• The input alphabet of Π is ΣX .
• The system Π is polynomially bounded with regard to X; that is, there exists

a polynomial p(r) such that for each instance u ∈ IX , every computation of the
system Π with input multiset u performs at most p(|u|) steps.

• The system Π is sound with regard to X; that is, for each instance u ∈ IX ,
if there exists an accepting computation of the system Π with input multiset u
then θX(u) = 1.

• The system Π is complete with regard to X; that is, for each instance u ∈ IX
such that θX(u) = 1, every computation of the system Π with input multiset u
is an accepting computation.

Proposition 2. Let R be a class of recognizer membrane systems. Then we have
PMC1f

R ⊆ PMC1p
R .

Proof. Let us assume that X ∈ PMC1f
R . Let Π ′ a membrane system from R

whose input alphabet is ΣX (the working alphabet of the problem X) such that it
is polynomially bounded, sound and complete with regard to X. Let us consider
the polynomial encoding cod from X to Π ′ defined as follows: cod(u) = u, for
every instance u ∈ IX . Then, Π ′ is polynomially bounded, sound and complete
with regard to (X, cod). Thus, X ∈ PMC1p

R .
�

4 Decision problems with a finite number of instances

In this section, we work with decision problems whose set of instances is a finite
set.

Proposition 3. Let T (so) the class of all recognizer transition P systems which
make use of send-out communication rules only. Then, if X = (IX , θX) is a deci-

sion problem whose set of instances is a finite set, then X ∈ PMC1f
T (so).

Proof. Let X = (IX , θX) be a decision problem whose set of instances IX is a
finite language over the alphabet ΣX . Let us consider the recognizer transition P
system Π = (Γ,Σ, µ,M1,R1, iin), defined as follows:
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• The working alphabet is Γ = ΣX ∪{yes, no} and the input alphabet Σ is ΣX .
• The membrane structure is µ = [ ]1 and the initial multiset is M1 = ∅.
• The set R1 of rules is

{[u ]1 → yes [ ]1 | θX(u) = 1} ∪ {[u ]1 → no [ ]1 | θX(u) = 0}

• The input membrane is labelled by 1.

Obviously, membrane system Π belongs to the class T (so) and it solves problem
X, according to Definition 2.

5 The NONE-OBJECT problem

In this section, we consider the NONE-OBJECT problem which informally corre-
sponds to the task of determining whether there is any input object or not in the
system. Formally, let X = (IX , θX) be the decision problem defined as follows:

IX = {∅} ∪ {an | n ∈ N, n ≥ 1} , θX(∅) = 1, and θX(an) = 0 for each n ≥ 1

That is, the problem X distinguishes two types of situations: absence of objects
on one hand, and at least one copy of object a, on the other hand.

Theorem 1. Let T (nc, ev, so, dis, pr) the class of all non-cooperative recognizer P
systems which makes use of minimal production in object evolution rules (that is,
only one object in the right-hand side of the rule), send-out communication rules,

dissolution rules and priorities. Then, NONE-OBJECT∈ PMC1f
T (nc,ev,so,dis,pr).

Proof. Let us consider the system Π from T (nc, ev, so, dis, pr) defined as follows:

• The working alphabet is Γ = {a, b, c} and the input alphabet is Σ = {a}.
• The membrane structure µ is µ = [ [ ]2 ]1 and the initial multisets areM1 = ∅

and M2 = {c}.
• The set R of rules of Π is the following:

{[ a→ b]2; [ b ]2 → no; [ c ]2 → yes; [ yes]1 → yes [ ]1; [ no]1 → no [ ]1}

• The set of priorities P among rules of Π is the following:{
([ a→ b]2, [ c ]2 → yes); ([ b ]2 → no, [ c ]2 → yes)

}
• The input membrane is labelled by 2.

Then, the following hold:

• For each natural number n ≥ 1, the system Π with input multiset {an} is
deterministic, the computation of Π + {an} performs three transition steps
and it is a rejecting computation.

• The system Π with input multiset ∅ is deterministic, the computation of Π+∅
performs two transition steps and it is an accepting computation.

Thus, NONE-OBJECT∈ PMC1f
T (nc,ev,so,dis,pr). �
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6 The ONLY-ONE-OBJECT problem

In this section, the problem of telling apart “one” from “more-than-one” object is
considered. Formally, let X = (IX , θX) be the decision problem defined as follows:

IX = {an | n ∈ N, n ≥ 1} and θX(an) = 1 if and only if n = 1

That is, the problem X distinguishes the case when there is only one copy of object
a from the rest of possible cases with several copies of that object. We denote that
problem as the ONLY-ONE-OBJECT problem. Obviously, the ONLY-ONE-OBJECT prob-
lem belongs to class P since it is easy to design a deterministic Turing machine solv-
ing that problem which takes two computation steps. Thus, ONLY-ONE-OBJECT∈ P.
Bearing in mind that for every class R of recognizer membrane systems, we have
we P ⊆ PMC1p

R , we deduce that ONLY-ONE-OBJECT∈ PMC1p
R .

It is easy to prove that ONLY-ONE-OBJECT∈ PMC1f
T (nc,ev,so,dis,pr), but the fol-

lowing result shows that this problem cannot be solved by a membrane system
from AM0(−d,+ne) without using precomputed resources, being AM0(−d,+ne)
the class of polarizationless P systems without dissolution rules and with division
rules for elementary and non-elementary membranes.

Theorem 2. There does not exist a recognizer membrane system Π ′ ∈ AM0(−d,+ne)
solving the ONLY-ONE-OBJECT problem in a polynomial time by a single membrane
system and free of resources. That is, ONLY-ONE-OBJECT/∈ PMC1f

AM0(−d,+ne).

Proof. (Reasoning by reductio ad absurdum) Let us assume that there exists a
recognizer membrane system Π ′ from AM0(−d,+ne) verifying the following:

(a) The input alphabet of Π ′ is the singleton {a}.
(b) Every computation of Π ′ with input multiset {a} is an accepting computation.
(c) Every computation of Π ′ with input multiset {an}, for each n > 1, is a rejecting

computation.

Let us denote by GΠ′+{a} (respectively, GΠ′+{an}, for each n > 1) the dependency
graph1 associated with the system Π ′ + {a} (resp. Π ′ + {an}). Then, we have:

• For each n > 1, GΠ′+{a} = GΠ′+{an}. Indeed, in both graphs there is only one
edge starting from s, specifically, the edge {s, (a, iin)}, and the rest of edges
are given by the rules of Π ′, due to Π ′ ∈ AM0(−d,+ne).

• A computation of Π ′ + {a} is an accepting computation if and only if there
exists a path in GΠ′+{a} from s to (yes, env).

• For each n > 1, a computation of Π ′ + {an} is an accepting computation if
and only if there exists a path in GΠ′+{an} from s to (yes, env).

1 We will not recall the formal definition here (see [2, 18] for details). The dependency
graph can be intuitively seen as a map of “reactants-product” relationship between
objects: the nodes are pairs (object, region) and for every rule of the system there will
be an arc connecting each object on the left-hand-side to each object on the right-hand
side.
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Thus, bearing in mind that GΠ′+{a} = GΠ′+{an} we deduce that every computa-
tion of Π ′ + {a} is an accepting computation if and only if every computation of
Π ′+{an}, for each n > 1, is an accepting computation. Hence, conditions (b) and
(c) are contradictory.

�

Corollary 1. PMC1f
AM0(−d,+ne) ( P ⊆ PMC1p

AM0(−d,+ne).

7 A version of the PARITY problem

In this section, a version of the PARITY problem is considered. Specifically, let
PARITY = (IPARITY, θPARITY) be the decision problem defined as follows:

IPARITY = {an | n ∈ N, n ≥ 1} and θPARITY(a
n) = 1 if and only if n is even

That is, the PARITY problem distinguishes an even number of copies of object a
from an odd number of copies of that object. Obviously, this version of the PARITY
problem belongs to class P since it is easy to design a deterministic Turing machine
solving that problem.

Theorem 3. Let T (mcmp, so, dis, pr) the class of all recognizer P systems which
make use of minimal cooperation and minimal production in object evolution rules,
send-out communication rules, dissolution rules and priorities. Then, PARITY∈
PMC1f

T (mcmp,so,dis,pr).

Proof. Let us consider the system Π from T (mcmp, so, dis, pr) defined as follows:

(a) The working alphabet is Γ = {a, b} and the input alphabet is Σ = {a}.
(b) The membrane structure is µ = [ [ ]2 ]1, and the initial multisets are M1 = ∅

and M2 = ∅.
(d) The set R of rules of Π is the following:

{[ a2 → b]2; [ b2 → b]2; [ a]2 → no; [ b]2 → yes}∪
{[ no]1 → no [ ]1; [ yes]1 → yes [ ]1}

(e) The set of priorities P among rules of Π is the following:{
([ a2 → b]2, [ a]2 → no); ([ b2 → b]2, [ a]2 → no); ([ a2 → b]2, [ b]2 → yes);
([ b2 → b]2, [ b]2 → yes); ([ a]2 → no, [ b]2 → yes)

}
(f) The input membrane is labelled by 2.

Then, for each natural number n ≥ 1, the following hold:

• The system Π with input multiset {an} is deterministic.
• The computation of Π + {an} performs 2 + blog2(n)c transition steps.
• The natural number n is odd if and only if the configuration Cblog2(n)c

contains

a copy of object a.
• The natural number n is even if and only if the computation of Π + {an} is an

accepting computation.

Thus, PARITY∈ PMC1f
T (mcmp,so,dis,pr). �
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8 Conclusions

In this work, the ability of solving problems by single “stand-alone” membrane sys-
tems instead of families of membrane systems is studied. While using precomputed
resources, it is easy to see that problems from P can be solved by a single mem-
brane system using only send-out rules. A question arises from here: What if we
cannot access to a precomputed encoding and we have the raw instance as input?
In this paper, the power of single membrane systems free of precomputed resources
is also studied, giving, on the one hand, solutions to decision problems by means of
a single membrane system solving them, and on the other hand demonstrating the
inability of systems from AM0(−d,+ne) to solve the ONLY-ONE-OBJECT problem
by using the dependency graph technique in a novel way.

While talking about recognizer membrane systems, we suppose that they can,
at least, send an object to the environment to return the answer. Even with this
minimal definition, the lower bound for PMC1p

R has been demonstrated to be
P. On the other hand, logic gates have been solved by a system using only non-
cooperative send-out rules. This result gives a tool to tackle problems below P in
the framework of Membrane Computing.

An interesting question is to obtain a lower bound of these systems using only
unary alphabets; that is, not allowing cooperation implicit in the instance of the
problem. It could be also worth investigating other “weaker” variants, for example
obtained removing priorities.

Some open problems remain for future work, e.g. looking for upper bounds of
the complexity classes PMC1p

R and PMC1f
R .
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13. Gh. Păun. P systems with active membranes: attacking NP–complete problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75-90.
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