
Search Based Software Engineering in Membrane
Computing

Ana Ţurlea1, Marian Gheorghe2, Florentin Ipate1

1 Faculty of Mathematics and Computer Science and ICUB
University of Bucharest, Bucharest, Romania
ana.turlea@fmi.unibuc.com, florentin.ipate@ifsoft.ro

2 School of Electrical Engineering and Computer Science,
University of Bradford, Bradford, UK
m.gheorghe@bradford.ac.uk

Summary. This paper presents a testing approach for kernel P Systems (kP systems),
based on test data generation for a given scenario. This method uses Genetic Algorithms
to generate the input sets needed to trigger the given computation steps.

Keywords: membrane computing; kernel P systems; testing; genetic algorithms:
test data generation.

1 Introduction

Membrane Systems [17], now known as P Systems, were founded by Gheorghe
Păun in 1998 [15, 16]. Initially inspired by the structure and functioning of the
living cells, the field has been developed very fast and different types of P systems
being investigated. Kernel P systems (kP systems, for short), have been introduced
in [2]. These systems can be simulated using a software framework, called kPWork-
bench [1] or some earlier variants (so called simple kP systems) using P-Lingua
and the MeCoSim simulator [3]. Having many computational models with different
software implementations, associated with various applications, it is very impor-
tant to develop testing methods, to check that the implementation agrees with
the system specification. This testing methodology is called conformance testing,
which tries to find the differences betweem the behaviour of an implementation
and its specification. The testing task is not trivial, given the fact that the models
are parallel and non-deterministic. Previous works on P systems testing include
testing cell-like P systems with methods like finite state-based inspired [6], stream
X-machine based testing [7], mutation testing for evaluating the efficiency of the
test sets [11], model-checking based testing [8] and testing identifiable kernel P
systems using X-machines [4].

Automated test data generation is a topic of interest in software engineering
community. There are many evolutionary testing approaches that generate test

152 A. Ţurlea, M. Gheorghe, F.Ipate

date from code, finite state machines and other models, but there are no applica-
tions in membrane computing community.

In kernel P systems, we can simulate the evolution of the model for a given
number of steps, starting with an initial multiset. We can change the evolution of
the system by adding new multisets as inputs for each evolution step.

This paper presents a testing approach for kernel P systems, using genetic
algorithms to generate test data that leads to a given set of computation steps.

In Section 2 we present some basic information about kP systems, evolutionary
functional testing, genetic algorithms, search based testing for extended finite state
machines. Section 3 describes the kP system type used for testing, the configuration
of the algorithm and some experimetal results. In Section 4 we present conclusions
and future work.

2 Preliminaries

In this section we will present some basic details about kernel P systems and Search
Based Testing using Genetic Algorithms. We will also present some approaches
that use evolutionary algorithms to test Extended Finite State Machines.

2.1 Kernel P systems

In the following we will give a formal definition of kernel P systems (or kP sys-
tems) [2]. We start by introducing the concept of a compartment type utilised later
in defining the compartments of a kernel P system.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.

Definition 2. A kP system of degree n is a tuple kΠ = (A,µ,C1, . . . , Cn, i0),
where

• A is a finite set of elements called objects;
• µ defines the membrane structure, which is a graph, (V,E), where V is a set

of vertices representing components (compartments), and E is a set of edges,
i. e., links between components;

• Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment of the system consisting of a
compartment type, ti, from a set T and an initial multiset, wi,0 over A; the
type ti = (Ri, σi) consists of a set of evolution rules, Ri, and an execution
strategy, σi;

• i0 is the output compartment where the result is obtained.

Within the general kP systems framework, the following types of evolution
rules have been considered so far:

Search Based Software Engineering in Membrane Computing 153

• rewriting and communication rule: x → y{g}, where g represents a guard,
x ∈ A+ and y ∈ A∗, where y is a multiset with potential different compartment
type targets (each symbol from the right side of the rule can be sent to a
different compartment, specified by its type; if multiple compartments of the
same type are linked to the current compartment, then one is randomly chosen
to be the target). Unlike cell-like P systems, the targets in kP systems indicate
only the types of compartments to which the objects will be sent, not particular
instances (for example, y = (a1, t1) . . . (ah, th), where h ≥ 0, and for each
1 ≤ j ≤ h, aj ∈ A and tj indicates a compartment type from T).

• structure changing rules: membrane division, membrane dissolution, link cre-
ation and link destruction rules, which all may also incorporate complex guards
and that are covered in detail in [2]. However, this type of rules will not be
considered in the following discussion.

For a multiset w over A and an element a ∈ A, we denote by |w|a the number
of objects a occurring in w. Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of
relational operators, γ ∈ Rel, a relational operator, and an a multiset, consisting
of n copies of a. We first introduce an abstract relational expression.

Definition 3. If g is the abstract relational expression denoting γan and w a
multiset, then the guard g applied to w denotes the relational expression |w|aγn.

The abstract relational expression g is true for the multiset w, if |w|aγn is true.
We consider now the following Boolean operators ¬ (negation), ∧ (conjunc-

tion) and ∨ (disjunction). An abstract Boolean expression is defined by one of the
following conditions:

• any abstract relational expression is an abstract Boolean expression;
• if g and h are abstract Boolean expressions then ¬g, g∧h and g∨h are abstract

Boolean expressions.

The concept of a guard, introduced for kP systems, is a generalisation of the
promoter and inhibitor concepts utilised by some variants of P systems.

Definition 4. If g is an abstract Boolean expression containing gi, 1 ≤ i ≤ q,
abstract relational expressions and w a multiset, then g applied to w means the
Boolean expression obtained from g by applying gi to w for any i, 1 ≤ i ≤ q.

As in the case of an abstract relational expression, the guard g is true with
respect to the multiset w, if the abstract Boolean expression g applied to w is true.

For example, if g is the guard defined by the abstract Boolean expression
≥ a4∧ < b2 ∨ ¬ > c and w a multiset, then g applied to w is true if it has at least
4 a′s and less than 2 b′s or no more than one c.

2.2 Evolutionary Functional Testing

Software testing is the process of finding errors in a system, also measuring the
quality of the system. The correctness of a system is the most essential purpose

154 A. Ţurlea, M. Gheorghe, F.Ipate

of testing. Automated testing can be divided into white-box testing and black-
box testing. White-box testing (structural testing) uses the source code of the
system to generate test cases, while black-box testing (functional testing) uses the
systems specifications for test generation. In white box testing the tester needs to
have a look inside the source code and find out which unit of code is behaving
inappropriately. In black box testing, a tester uses the system architecture or
specification and does not have access to the source code [10].

One of the common approaches of automated testing is model based test cases
generation. The generated test cases (based on the model) reveal faults and verify
if the implementation conforms to its specification. Transforming this problem into
an optimisation problem, we can use evolutionary approaches.

Search based software testing represents automated search in a potentially
large input space, guided by a problem specific fitness function. The search space
depends on the problem and on the configuration of the parameters of the system.
The fitness function guides the search to the test goal and scores different inputs
of the system according to the test goal.

Test cases generation has been intensively studied for EFSMs.
Test cases are set of input values and expected results developed to cover

certain test conditions. A test suite is a collection of test cases.

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are metaheuristic search techniques (mainly applied
in optimization problems) that simulate the biological evolution and have the
following elements: populations of chromosomes (individuals, candidate solutions),
selection according to a fitness function, crossover to produce new offspring and
random mutation of new offspring [14].

GAs start with initialization of a population with random candidate solutions,
evolve the population several times, until a solution is found or a stop condition
is met. Each element (chromosome) from the population represents a sequence
of variables/parameters. Variable values can be represented in binary form, real-
numbers, or even characters.

At each evolution, individuals are evaluated and selected for the next gen-
eration. The quality of each individual is determined by a fitness function that
depends upon the problem considered. If the chromosome is fitter, it is likely to
be selected to reproduce more times [14]. The optimization problem can be to
minimize or to maximize the fitness function.

Crossover is applied to the randomly selected parent chromosomes, exchanging
information between them and creating new children chromosomes. Some common
types of crossovers are: single-point crossover, multi-point crossover and uniform
crossover.

Mutation is applied, with some probability, to each chromosome, randomly
changing some of the individual’s genes. A new evolution starts with these new
individuals. Mutation prevents genetic pool from premature convergence (getting

Search Based Software Engineering in Membrane Computing 155

stuck in local maxima/minima). The main purpose of mutation is to bring diversity
in population.

As described in [14], a simple GA works as follows:

1. Start with a randomly generated population (the initial population).
2. Compute fitness function for each chromosome in the population.
3. Repeat the following steps until a new generation is created:

a) Select a pair of parent individuals from the current population (a chromo-
some can be selected only once to become a parent);

b) Apply crossover on the current pair to form two offsprings.
c) Mutate the two offspring chromosomes, with a given probability, and place

the resulting individuals in the new population.
4. Selection is applied on the current population along with the new population.
5. Go to step 2.

A generation is represented by an iteration of this process. The entire set of
generations is called a run. Two different runs will produce different behaviors.
In order to evaluate the efficacy of a genetic algorithm, we should run it multiple
times and analyse the results.

2.4 Search based Testing for EFSM Models

An extended finite state machine (EFSM) is a six-tuple (S, s0, V, I, O, T) [9] where
S is the finite set of states, s0 is the initial state, V is the finite set of context
variables, I is the finite set of inputs, O is the finite set of outputs and T is the
finite set of transitions. A transition is represented by a start state, an input that
may have associated input parameters, a guard (logical expression), a sequential
operation (a method with assignments and output statements) and the end state.

A path of an EFSM is a sequence of adjacent transitions, p = S1
f1[g1]−−−→

S2
f2[g2]−−−→ . . . Sm

fm[gm]−−−−→ Sm+1, where Si represents the state i from that path, fi
is the method executed on the transition i and gi is the guard of the transition
i. A path can be feasible, if there exist values for the input parameters to satisfy
guards and to trigger all transitions for that path, and infeasible, otherwise.

There are many approaches that generate values for input parameters for each
method fi from a given path, that satisfy the guard conditions gi and trigger
all transitions. Lefticaru and Ipate investigated in [13] the use of search based
techniques for functional testing using state machines. Its purpose is to generate
input data for chosen path in a state machine, so that it triggers the transitions,
using three search techniques: simulated annealing, genetic algorithms and particle
swarm optimization. Kalaji et al. [9] proposed an integrated search based test
data generation using EFSMs. The approach has two phases. In the first phase,
feasible paths are generated using a GA with a feasibility metric based on dataflow
dependence as fitness function, satisfying transition coverage criteria. In the second
phase those paths are used as inputs to generate test data that trigger the paths,

156 A. Ţurlea, M. Gheorghe, F.Ipate

using a GA with a fitness function based on the branch distance function and
approach level.

The approach proposed by Lefticaru and Ipate [12] is based on the state dia-
gram and uses a genetic algorithm to generate test data. The first step is to find
feasible paths to achieve some coverage criteria. The second step is to find, for each
path, the input values for parameters, to trigger the transitions. The test data gen-
eration problem is converted to an optimization problem, aiming to minimize the
fitness function.

Paper [18] generates test data for EFSMs and uses a hybrid genetic algorithm,
improving the algorithm presented in [12].

For a particular path in the EFSM, a chromosome (individual, possible solu-
tion) is a list of values, x = (x1, x2, . . . , xn), corresponding to all parameters of the
methods, as they appear on that path. A solution is a chromosome with fitness
function 0 that triggers transitions between states according to the selected path
and validates the guards of each transition.

The fitness function used in this approach is: fitness = approach level +
normalized branch level (f = al+nbl). approach level is calculated by m−1−p,
where m is the length of the path to be executed and p is the number of nodes
executed until the first unsatisfied guard on the path. normalized branch level
is the mapping onto [0, 1) for branch level. branch level computes, for the pred-
icate that is not satisfied, how close the predicate was to being true, using the
transformations from Table 1. The normalization function is norm : [0, 101] →
[0, 1], norm(d) = 1− 1.05−d.

Element Objective function value obj

Boolean if TRUE then 0 else K

a = b if abs(a− b) = 0 then 0 else abs(a− b) + K

a 6= b if abs(a− b) 6= 0 then 0 else K

a < b if a− b < 0 then 0 else (a− b) + K

a ≤ b if a− b ≤ 0 then 0 else (a− b) + K

a > b if b− a < 0 then 0 else (b− a) + K

a ≥ b if b− a ≤ 0 then 0 else (b− a) + K

a ∧ b obj(a) + obj(b)

a ∨ b min(obj(a), obj(b))

a xor b obj((a ∧ ¬b) ∨ (¬a ∧ b))

¬a Negation is moved inwards and propagated over a

Table 1. Tracey’s objective functions for relational predicates and logical connectives.
The value K, K > 0, refers to a constant which is always added if the term is not true

The algorithm ends when the stop criteria is reached or when the maximum
number of evolutions is exceeded. After the selection step, a new generation is
created using recombination, crossover and mutation.

Search Based Software Engineering in Membrane Computing 157

3 Search based Testing for kP systems

Modelling systems specification can be also done by using kP systems. In this
paper we will introduce kP systems that behave similar to EFSMs and apply
testing approaches based on EFSMs.

We will consider deterministic kP systems with two compartments.
The main compartment will only consist of rewriting rules of the form Aa →

Bb{g}, where A,B and a, b belong to two disjoint sets (A,B play the role of the
input and output states of a transition of an EFSM, respectively, whereas a, b are
input and output of the transition, with g being its guard).At any moment only
one rule is applied, i.e. the system is always working in sequential manner.

The other compartment is meant to send symbols to the main compartment
that are inputs a for its rules. This compartment is behaving similar to an environ-
ment of an EFSM that provides inputs to it. The rules have the form C → D(a,M),
where C,D and a belong to disjoint sets, as in the case of the main compartment;
M is the type of that compartment.

An execution of the system from a given configuration consists in applying a
rule from the input compartment, sending the input multiset to the main com-
partment and applying a corresponding rule from the main compartment.

The testing strategy developed in this paper will refer to the main compart-
ment; the other one will just provide inputs, as presented above.

When we aim to simulate the execution of the main compartment for N steps
then the compartment generating inputs should be able to generate N inputs.
Execution of each rule Aa → Bb{g} in the main compartment depends of the
availability of Aa and also on guard g that must be true. In order to generate
suitable inputs both these conditions have to be fulfilled and this is what happens
for a test generation.

We can automatically generate test data for kPSystems using genetic algo-
rithms and the kPWorkbench tool to simulate the evolution of the system.

3.1 kP System Definition

In this subsection we will present the kP system configuration.
The kP system will be denoted kπ = (A,µ,C1, C2, i0). The kP system will have

the following elements:
µ = (V,E), where V = {cM, cInp}, cM = main compartment and cInp = the

input compartment, E = {(cM, cInp)}.
We denote AST and AIO two disjoint sets and A = AST ∪ AIO. AST denotes

symbols that are either corresponding to states in cM or symbols used in cInp
for generating inputs. AIO are input and output symbols as well as symbols that
appear in guards.

The membrane structure contains two compartments, cM = (tM , wM0), where
tM = (RM , σM) is the compartment type and wM0 is the initial multiset over A
and cInp = (tI , wI0), where tI = (RI , σI) is the compartment type and wI0 is the
initial multiset over A.

158 A. Ţurlea, M. Gheorghe, F.Ipate

The main compartment type tM = (RM , σM) consists of a set of evolution rules
RM and an execution strategy σM working in sequential manner. RM contains only
rewriting rules:Aa→ Bb{g}, where A,B ∈ AST and a, b ∈ AIO.

In an evolution step and a given configuration, only one rule can be applied.
The input compartment type tI = (RI , σI) consists of a set of evolution rules

RI and the execution strategy σI working in sequential manner. RI contains only
rewriting and communication rules C → D(a, tM), where C,D ∈ AST and a ∈ AIO

The initial configuration contains the initial values from the memory and the
output compartment i0 is represented by the main compartment.

Example 1. Let us consider the kP system kΠ1 = (A,µ, cM, cInp, i0), where i0 =
cM , AST = {A,B,C,D,E, F,A1, ..., A6}, AIO = {a, b.f, d, o, t, x}

RM =



r1 : A, f → A, a{< 3a& = f} r2 : A, f → E{= 3a}
r3 : A, t→ B, a{< 3a& = t& < f} r4 : B, x→ C{= x}
r5 : B, d→ D{= d} r6 : C, b, x→ C{>= x}
r7 : D, d→ D, b{>= d} r8 : C, o→ F{< x}
r9 : D, o→ F{< d}

RI =


r10 : A1 → A2, (f, tM) r11 : A2→ A3, (f, tM)

r12 : A3→ A4, (t, tM) r13 : A4→ A5, (x, tM)

r14 : A5→ A6, (3x, tM) r15 : A6 → A7, (o, tM)

The inital configuration of kπ1 is M0 = (100b A,A1).
The only applicable rule is r10 for cInp and A1 =⇒r10 A2, (f,M) and f goes

to cM . Hence, the next configuration is M1 = (100b A f,A2).
In this configuration we can only apply rule r1 in cM and rule r11 in cInp,

A2 =⇒r11 A3, (f,M) in cInp , f goes to cM and A =⇒r1 A, a in cM and the next
configuration is M2 = (100b A a f,A3).

The next computational step is A3 =⇒r12 A4, (t,M) in cInp, t goes to cM and
A, f =⇒r1 A, a in cM and the next configuration is M2 = (100b A 2a t, A4).

The next configuration is M3 = (100b B 3a x,A5) obtained by applying
A4 =⇒r13 A5, (x,M) in cInp, sending x to cM and applying A, t =⇒r3 B, a
in cM .

After this step, the only applicable rules are A5 =⇒r14 A6, (3x,M) in cInp
and B, x =⇒r4 C in cM , sending 3x to cM and the next configuration is M4 =
(100b C 3a 3x,A6).

From this configuration we can apply A6 =⇒r15 A7, (o,M) in cInp and
C, b, x =⇒r6 C in cM , sending o to cM and reaching configuration M5 =
(99b C 3a 2x o,A7).

The next computational step contains the rule C, b, x =⇒r6 C applied in cM ,
obtaining the configuration M6 = (98b C 3a x o,A7). In the next step, the same
rule is applied identically in cM and M7 = (97b C 3a o,A7).

Search Based Software Engineering in Membrane Computing 159

In the last computational step, the applicable rule is C, o =⇒r8 F in cM and
the final configuration is M8 = (97b F 3a,A7).

The evolution steps obtained by this simulation are the following:

• Step 1: rule r10
• Step 2: rules r11r1
• Step 3: rules r12r1
• Step 4: rules r13r3
• Step 5: rules r14r4
• Step 6: rules r15r6
• Step 7: rule r6
• Step 8: rule r6
• Step 9: rule r8

To simulate the execution of a system we use kPWorkbench. kPWorkbench
is an integrated software suite aimed to provide support for kP systems. Among
other functionallities, kPWorkbench contains tools for modelling, simulating and
verifying kP systems. A simulation trace represents the evolution of the system
during some computations.

kP-Lingua model

kPWorkbench

Simulation Traces

Fig. 1. kPWorkbench simulation steps

3.2 Genetic Algorithm Configuration

The Genetic Algorithm has the following steps:

• create random initial population - length N ;

160 A. Ţurlea, M. Gheorghe, F.Ipate

• evaluate the population using the fitness function;
• repeat the following steps until the stopping condition is reached:

– offspring population ← reproduction(population);
– evaluate offsprig popultion;
– population ← reinsertion+selection(population, offspring population).

A chromosome (x1, x2, . . . , xn) is represented as a list of input symbols corre-
sponding to the input set. A gene represents the input for the corresponding step
and consists of a list of strings (input symbols) xi = (r1s1, r2s2, . . . , rnsn), where
si is a symbol from the alphabet, and ri is the number of times the symbol appears
in the input set.

The Crossover Operator creates two new chromosomes from the two existing
parent chromosomes, using one of the two operations, with equal probability.

• exchange only the value for a gene from a random selected point{
(x1, x2, . . . , xn)

(y1, y2, . . . , yn)
→

{
(x1, x2, . . . , yi, . . . , xn)

(y1, y2, . . . , xi, . . . , yn)

• exchange for a random point only a part of the gene{
(x1, x2, . . . , xi, . . . , xn)

(y1, y2, . . . , yi, . . . , yn)
→

{
(x1, x2, . . . , x

′
i, . . . , xn)

(y1, y2, . . . , y
′
i, . . . , yn)

where
xi = (r1s1, . . . , rnsn), yi = (t1s1, . . . , tnsn),
x′i = (r1s1, . . . , tisi, . . . , tnsn), y′i = (t1s1, . . . , risi, . . . , rnsn)

A chromosome can be mutated in many different ways. To identify possible
mutation operators, we considered the characteristics of a chromosome.We have
defined the following different mutation operators, which are all applied with 0.5
probability:

• completly change a gene (an input value)
• remove gene part - for an input value choose randomly a symbol that will not

be used (ri = 0)
• for a random gene - replace random symbol number(ri)
• exchange materials between two genes

We tried to apply the selection operator as it was used in many test data
generation approaches. The reinsertion of the offspring population into the new
population was made in different ways:

• the new population = the offspring population [12];
• the new population = the offspring population and the fittest individual is kept

in the next generation [18];

Search Based Software Engineering in Membrane Computing 161

• apply selection operator and select N chromosomes from the offspring popula-
tion along with the old population, using different selectors: best chromosome
selection, binary tournment selection.

None of these methods worked for our problem. The algorithm was stuck in a
local optima. In order to overcome this problem we change the reinsertion method:
the best 50% of the current generation and the best 50% of the new offspring are
retained. In the next evolution, the crossover operator will use a parent that came
from the old population and a parent that came from the offspring population and
will create a new individual. This reinsertion method was inspired and adapted
from paper [5].

P = {x1, y1, x2, y2, . . . , x25, y25}, where x1, x2, . . . , x25 ∈ OldPopulation and
y1, y2, . . . , y25 ∈ Offspringpopulation

To evaluate an individual we need to compute the objective function. To verify
if a chromosome is the solution, we need to simulate the system with the corre-
sponding input values and compare the simulation traces with the given steps.
The fitness function is based on the approach level and the branch distance. It
checkes if the input steps are exactly the needed ones (representing a solution)
or how far is the chromosome from the solution. The approach level records how
many steps were not executed by a particular input. The fewer steps executed,
the further away the input is from executing the steps. The branch distance is
computed using the conditions of the guards of the rule at which the evolution
diverted away from the current target step.

To compute the fitness function we need to perform a simulation of the system.
To simulate the system we use kPWorkbench.

3.3 Experiments

In our experiments we used the kP system presented in Example 1.

Experiment 1

consisted in generating test data for the following evolution steps:
Steps = {r10, (r1, r11), (r3, r12), (r4, r13), (r7, r14), r7, r7, r7, r7, t8}
The size of the input set is size = 5. In this example we have 10 steps, but

only the first 6 will receive inputs. The other steps will consume the inputs until
the system reaches the final configuration.

The maximum number of evolution is set to 50.
This experiment was made to find the suitable configuration for the algorithm,

including the reinsertion method. As described in Subsection 3.2, the first experi-
ments failed. Running 100 times the algorithm for each configuration, we couldn’t
find a solution. Only for the new reinsertion method the algorithm was successful
with a success rate of 75%. Also, the average number of evolutions needed to find
a solution was 37.

162 A. Ţurlea, M. Gheorghe, F.Ipate

There are many input sets that create the given scenario. Table 3.3 contains
some examples of solutions obtained using during this experiment. The first column
shows the number of generations needed to find the solution.

Evolutions Input1 Input 2 Input 3 Input 4 Input 5

45 1f 2x 1t 1d 1f 3x 3d 2x 2d 1o
41 1f 2x 1t 1d 2x 2d 1f 6x 3d 1o
33 1f 1f 1t 5x 1d 1o 5x 4d
32 1f 1t 1d 1x 1f 4x 5d 1o 1x
28 1f 1t 1d 1o 2x 3x 1d 1f 1x 4d
27 1f 1t 1d 1o 1t 2d 1f 3d
43 1f 1t 1x 3x 1d 2x 1d 1o 1f 4x 4d

Table 2. Example of solutions for Experiment 1

Experiment 2

consisted in generating test data for other examples of evolution steps, using the
configuration establish during Experiment 1. One of the following evolution steps
set we used was:

Steps = {r10, (r1, r11), (r3, r12), (r4, r13), (r6, r14), r6, r6, r6, r6, t8}
The size of the input set is size = 5. In this example we have 10 steps, but only

the first 6 will receive inputs. The other steps will consume the inputs until the
system reaches the final configuration. The maximum number of evolution is set
to 50. Running 100 times the algorithm, we couldn’t find a solution. The success
rate for this example was 62% and the average number of evolutions needed to
find a solution was 36.

4 Conclusions

In conclusion, we used genetic algorithms to generate test data for kP systems. The
algorithm input is reperesented by a kP system model and a set of computation
steps, the ouput being the set of input sets needed to create the given input
scenario. The algorithm uses kP systems that behave similar to EFSMs. We tried
to apply directly some algorithm defined for EFSMs, but it wasn’t successful. We
overcomed this problem by changing the reinsertion method of the population.
With this configuration, the algorithm was successful.

As future work, we will extend this algorithm to other kP systems, starting
from using different kinds of rules also.

Search Based Software Engineering in Membrane Computing 163

Acknowledgements

This work is supported by a grant of the Romanian National Authority for Scien-
tific Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0210.

References

1. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierla, L.: Model checking kernel
p systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg,
G., Salomaa, A. (eds.) Membrane Computing. Lecture Notes in Computer Science,
vol. 8340, pp. 151–172. Springer Berlin Heidelberg (2014)

2. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P Systems - Version I. Eleventh Brain-
storming Week on Membrane Computing (11BWMC) pp. 97–124 (2013)

3. Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M.J., Turcanu, A.,
Valencia-Cabrera, L., Garćıa-Quismondo, M., Mierla, L.: 3-col problem mod-
elling using simple kernel P systems. International Journal of Computer Math-
ematics 90(4), 816–830 (2013). https://doi.org/10.1080/00207160.2012.743712,
https://doi.org/10.1080/00207160.2012.743712

4. Gheorghe, M., Ipate, F., Lefticaru, R., Turlea, A.: Testing identifiable kernel p sys-
tems using an x-machine approach. In: International Conference on Membrane Com-
puting. pp. 142–159. Springer (2018)

5. Harman, M., McMinn, P.: A theoretical & empirical analysis of evolutionary testing
and hill climbing for structural test data generation. In: Proceedings of the 2007
international symposium on Software testing and analysis. pp. 73–83. ACM (2007)

6. Ipate, F., Gheorghe, M.: Finite state based testing of P systems. Natu-
ral Computing 8(4), 833 (2009). https://doi.org/10.1007/s11047-008-9099-3,
https://doi.org/10.1007/s11047-008-9099-3

7. Ipate, F., Gheorghe, M.: Testing non-deterministic stream X-machine
models and P systems. Electronic Notes in Theoretical Computer Sci-
ence 227, 113–126 (2009). https://doi.org/10.1016/j.entcs.2008.12.107,
https://doi.org/10.1016/j.entcs.2008.12.107

8. Ipate, F., Gheorghe, M., Lefticaru, R.: Test generation from P sys-
tems using model checking. Journal of Logic and Algebraic Program-
ming 79(6), 350–362 (2010). https://doi.org/10.1016/j.jlap.2010.03.007,
https://doi.org/10.1016/j.jlap.2010.03.007

9. Kalaji, A.S., Hierons, R.M., Swift, S.: An integrated search-based approach for au-
tomatic testing from extended finite state machine (EFSM) models. Information &
Software Technology 53(12), 1297–1318 (2011)

10. Khan, M.E., Khan, F.: A comparative study of white box, black box and grey box
testing techniques. International Journal of Advanced Computer Sciences and Ap-
plications 3(6), 12–1 (2012)

11. Lefticaru, R., Gheorghe, M., Ipate, F.: An empirical eval-
uation of P system testing techniques. Natural Computing
10(1), 151–165 (2011). https://doi.org/10.1007/s11047-010-9188-y,
https://doi.org/10.1007/s11047-010-9188-y

164 A. Ţurlea, M. Gheorghe, F.Ipate

12. Lefticaru, R., Ipate, F.: Automatic state-based test generation using genetic algo-
rithms. In: Proc. SYNASC’07. pp. 188–195. IEEE Computer Society (2007)

13. Lefticaru, R., Ipate, F.: Functional search-based testing from state machines. In: First
International Conference on Software Testing, Verification, and Validation, ICST
2008, Lillehammer, Norway, April 9-11, 2008. pp. 525–528 (2008)

14. Mitchell, M.: An introduction to genetic algorithms. MIT Press (1998)
15. Păun, G.: Computing with membranes. Tech. rep., Turku Centre for Computer Sci-

ence (1998)
16. Păun, G.: Computing with membranes. Journal of Computer and Sys-

tem Sciences 61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693,
https://doi.org/10.1006/jcss.1999.1693

17. The P systems website. http://ppage.psystems.eu, [Online; accessed 12/05/2018]
18. Turlea, A., Ipate, F., Lefticaru, R.: A hybrid test generation ap-

proach based on extended finite state machines. In: 18th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing, SYNASC 2016, Timisoara, Romania, September 24-
27, 2016. pp. 173–180 (2016). https://doi.org/10.1109/SYNASC.2016.037,
https://doi.org/10.1109/SYNASC.2016.037

