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Summary. In this study, we explore the computational complexity of deciding the ex-
istence of fixed points and cycles that can be reached from any other states (also called
global attractors) in the dynamics of inhibitorless and reactantless reaction systems. The
same problems were proved to be PSPACE-complete in the case of unconstrained re-
action systems. We show, in contrast, that in the considered resource-bounded classes
deciding whether a global fixed point attractor exists can be done in polynomial time.
Furthermore, we prove that only trivial cycles consisting of a single state can exist in the
dynamics of inhibitorless systems, while in reactantless systems cycles of two states may
occur, and it is coNP-hard to decide their existence.

1 Introduction

Introduced nearly two decades ago by Ehrenfeucht and Rozenberg [1], reaction
systems are an abstract computational model inspired by the chemical reactions
occurring in living cells. The notion at the heart of this model is that the biochem-
ical processes within a cell can be simulated using a limited collection of entities
that represent various substances, alongside a set of rules that mimic reactions. A
reaction is characterized by its reactants, inhibitors, and products, and it occurs
when the set of entities currently present in the cell (ie the system’s state) includes
all reactants and lacks any inhibitors, resulting in the reaction’s products.

Whenever a set of reactions takes place in a certain state, the system’s sub-
sequent state is determined by the union of the products of all the occurred re-
actions. This process defines a dynamical system whose points are given by all
the possible subsets of entities, ie all possible states of the reaction system. De-
termining the computational complexity of deciding on the occurrence of various
behaviours of such dynamical systems has been the object of a great deal of re-
search work [2, 3, 4, 5, 6, 7, 8].

Reaction systems operate on a qualitative basis, meaning that the presence
of a reactant in a given state implies it is available in sufficient quantities for all
reactions that require it, thus avoiding any conflicts over shared resources. Other
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related models have been proposed in the literature that waive this assumption,
see eg [9, 10, 11, 12, 13]. Nevertheless, the computational power of the simpler
qualitative model has been demonstrated by several studies [14, 15, 16, 17, 18]
showing that reaction systems can be effectively used to simulate various biological
processes.

Although the conventional framework for reaction systems does not limit the
number of reactants and inhibitors involved in each reaction, an alternative branch
of research concentrates on systems with constrained resources. Ehrenfeucht et
al. [19] first investigated how bounding the number of reactants and inhibitors in
the reactions can affect the kinds of functions that a reaction system can define.
Manzoni et al. [20] then classified resource-bounded systems in such a way that the
reaction functions enjoy specific properties within each class: in particular, they
identified the class of inhibitorless reaction systems, in which all reactions have
an empty set of inhibitors; the class of reactantless systems in which the set of
reactants is always empty; and the class of minimal-resources systems, later named
additive [21], in which each reaction only uses one reactant and no inhibitors.

Dennunzio et al. [22] studied the complexity of reachability in several subclasses
of inhibitorless and reactantless systems; Azimi et al. [23] studied how to list all
steady states of a system whose reactions have a small quantity of both reactants
and inhibitors; and Ascone et al. investigated the computational complexity of
problems related to the existence of fixed points and attractors in reactantless and
inhibitorless systems [24] and in additive systems [21].

Contributions.

In this paper, we study the computational complexity of deciding on the existence
of fixed points and cycles that are also global attractors (ie they can be reached
from every other state) in inhibitorless and reactantless reaction system. All these
problems were shown to be PSPACE-complete in unconstrained reaction sys-
tems [25]: in contrast, we show that disabling either the set of reactants or the set
of inhibitors reduces to polynomial the complexity of deciding whether a global
fixed point attractor exists, as well as determining if a given state is a global at-
tractor. Furthermore, we prove that only trivial cycles consisting of a single state
can exist in the dynamics of inhibitorless systems, while in reactantless systems
cycles of two states may occur, and it is coNP-hard to decide on their existence.
Table 1 summarises our results.

2 Basics Notions

Given a finite set S of entities, a reaction a over S is a triple (Ra, Ia, Pa) of subsets
of S; we call Ra the set of reactants, Ia the set of inhibitors, and Pa the nonempty
set of products. Note that, in this paper, the reactants and inhibitors of a reaction
are allowed to be empty sets as in the original definition of reaction systems [1]. The
set of all reactions over S is denoted by rac(S). A reaction system (RS) A = (S,A)
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Problem RS(∞,∞) RS(0,∞) RS(∞, 0)

A given state is a global attractor PSPACE-c [25] P (Cor. 13) P (Cor. 5)

∃ global fixed point attractor PSPACE-c [25] P (Cor. 14) P (Cor. 6)

∃ global cycle attractor
of length at least k

k = 2 PSPACE-c [25] coNP-hard (Thm. 18) ∄ (Lemma 7)

k > 2 PSPACE-c [25] ∄ (Pro. 15) ∄ (Lemma 7)

Table 1: Computational complexity of the problems studied in this work for dif-
ferent classes of reaction systems. RS(∞,∞), RS(0,∞) and RS(∞, 0) denote
unconstrained, reactantless and inhibitorless reaction systems, respectively (see
Def. 1). Light-blue cells contain the results proved in this paper.

where S consists of the finite set of entities S, called the background set, and a set
A ⊆ rac(S) of reactions over S.

We call any subset of S a state of the reaction system; a reaction a is enabled
in a state T when Ra ⊆ T and Ia ∩ T = ∅, and the set of all the reactions from
A enabled in T is denoted by enA(T ). The result function resa : 2S → 2S of a
reaction a, where 2S denotes the power set of S, is defined as

resa(T ) :=

{
Pa if a is enabled in T

∅ otherwise.

The definition of resa naturally extends to sets of reactions: given any T ⊆ S and
A ⊆ rac(S), we define resA(T ) :=

⋃
a∈A resa(T ). Consistently, the result function

resA of the whole RS A = (S,A) is defined as equal to resA, i.e., the result function
of the whole set of reactions of the reaction system. In this way, any RS A = (S,A)
induces a discrete dynamical system with state set 2S and next state function resA.

In this paper, we are interested in the dynamics of RS, i.e., the study of the
successive states of the system under the action of the result function resA starting
from some initial set of entities. The orbit or state sequence of a given state T of
a RS A is defined as the sequence of states obtained by subsequent iterations of
resA starting from T , namely the sequence (T, resA(T ), res

2
A(T ), . . . ). Note that

since S is finite, for any state T the sequence (resnA(T ))n∈N is always ultimately
periodic. In particular, the orbit of a state T is a cycle of length k if there exists
k ∈ N such that reskA(T ) = T , and reshA(T ) ̸= T for every h < k. In the special
case where k = 1, T is said to be a fixed point.

Any set of cycles forms an invariant set for A, that is, a set of states U ⊆ 2S

such that ∪U∈U{resA(U)} = U . In particular, it is also true that any invariant
set for A is a set of cycles [25]. A local attractor for A is an invariant set U such
that there exists an external state T /∈ U such that resA(T ) ∈ U . An invariant
set U is a global attractor if for all states T ∈ 2S there exists k ∈ N such that
reskA(T ) ∈ U , i.e., U is eventually reached from every possible state of A. When a
global attractor U consists of only one state T , we say that T is a global fixed-point
attractor. Similarly, U is a global cycle attractor if all the states in U belong to the
same cycle.
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We now recall the classification of reaction systems in terms of the number of
resources employed per reaction [20].

Definition 1 ([20]). Let i, r ∈ N. The class RS(r, i) consists of all RS having
at most r reactants and i inhibitors for reaction. We also define the (partially)
unbounded classes RS(∞, i) =

⋃∞
r=0 RS(r, i), RS(r,∞) =

⋃∞
i=0 RS(r, i), and

RS(∞,∞) =
⋃∞

r=0

⋃∞
i=0 RS(r, i).

We will call RS(0,∞) the class of reactantless systems, and RS(∞, 0) the class
of inhibitorless systems.

Note that the classification of Definition 1 does not consider the number of
products as a parameter because RS can always be assumed to be in singleton
product normal form [26]: any reaction (R, I, {p1, . . . , pm}) can be replaced by the
set of reactions (R, I, {p1}), . . . , (R, I, {pm}) which produce the same result.

Five equivalence classes of RS implied by Definition 1 have a characterisation
in terms of functions over the Boolean lattice 2S [20], listed in Table 2. Recall that

Class of RS Subclass of 2S → 2S

RS(∞,∞) all
RS(0,∞) antitone
RS(∞, 0) monotone
RS(1, 0) additive
RS(0, 0) constant

Table 2: Functions computed by several classes of RS.

a function f : 2S → 2S is antitone if X ⊆ Y implies f(X) ⊇ f(Y ), monotone if
X ⊆ Y implies f(X) ⊆ f(Y ), additive (or an upper-semilattice endomorphism)
if f(X ∪ Y ) = f(X) ∪ f(Y ) for all X,Y ∈ 2S . We say that the RS A = (S,A)
computes the function f : 2S → 2S if resA = f .

3 Global Attractors of Inhibitorless RS

In this section, we study the complexity of deciding the existence of a global fixed-
point attractor or a global cycle attractor in inhibitorless reaction systems.

3.1 Existence of a global fixed-point attractor

We begin with a simple observation which follows immediately from the definition
of global fixed-point attractors.

Observation 2. A reaction system with a global fixed-point attractor cannot have
any other fixed points or cycles.



Global Attractors of Reactantless and Inhibitorless Reaction Systems 5

In particular, Observation 2 implies that if a global fixed-point attractor ex-
ists, it is unique. Proposition 3 provides a characterization of global fixed-point
attractors for monotone functions.

Proposition 3. Let S be a finite set of n elements, f : 2S → 2S a monotone
function and T a fixed point for f consisting of t elements. Then, T is a global
fixed-point attractor for f if and only if f t(∅) = T = fn−t(S).

Proof. ⇒ Consider the sequence ∅ ⊊ f(∅) ⊊ · · · ⊊ fm(∅) = fm+1(∅). If it
was fm(∅) ⊊ T , there would exist a fixed point different from T , therefore T
would not be a global attractor by Observation 2. Thus it must be fm(∅) = T
and since |T | = t, because of the monotonicity of f , it must also be m ≤ t,
implying that f t(∅) = T . Consider now the sequence S ⊋ f(S) ⊋ · · · ⊋
fk(S) = fk+1(S). If it was fk(S) ⊋ T , then there would exist a fixed point
different from T , therefore T would not be a global attractor. We obtain that
fk(S) = T ; since t = |T | = |fk(S)| ≤ n − k then by monotonicity it must be
k ≤ n− t, thus fn−t(S) = T .

⇐ We need to prove that T = f t(∅) = fn−t(S) is a global attractor. Consider
any state ∅ ⊊ T ′ ⊊ S: by monotonicity, it holds that T = f t(∅) ⊆ f t(T ′) and
fn−t(T ′) ⊆ fn−t(S) = T . We divide two cases.
Case (i): t ≤ n− t. Since T ⊆ f t(T ′), then it holds fn−2t(T ) ⊆ fn−2t+t(T ′) ⇒
T ⊆ fn−t(T ′) ⊆ T , and therefore T ′ reaches T in at most n− t steps.
Case (ii): t > n − t. Since T ⊇ fn−t(T ′), then f2t−n(T ) ⊇ f2t−n+n−t(T ′) ⇒
T ⊇ f t(T ′) ⊇ T , therefore T ′ reaches T in at most t steps.

Proposition 3 thus immediately gives a criterion for deciding the existence of
a global fixed-point attractor for monotone functions.

Corollary 4. Given S a finite set of n elements, and f : 2S → 2S monotone,
there exists a global fixed-point attractor if and only if f t(∅) = fn−t(S) for some
0 ≤ t ≤ n.

Proposition 3 and Corollary 4 can be directly applied to inhibitorless reaction
systems, whose result functions are always monotone. We obtain the following
results.

Corollary 5. Given a RS A = (S,A) ∈ RS(∞, 0) and a state T ⊆ S, deciding if
T is a global fixed-point attractor of A is in P.

Proof. Since resA is monotone [20], we can apply Proposition 3. Therefore, T is
a global attractor for A if and only if restA(∅) = T = resn−t

A (S) where t and n are
the cardinalities of T and S, respectively. For any state U ⊆ S, resA(U) can be
computed in polynomial time: it suffices to check which reactions are enabled in U
by intersecting their reactants and inhibitors with U , and then take the union of
the products of the enabled functions. To decide if T is a global attractor we only
need to evaluate resA at most |S| times, thus the problem is in P.

Corollary 6. Given a RS A = (S,A) ∈ RS(∞, 0) and a state T ⊆ S, deciding
on the existence of a global fixed-point attractor for A is in P.



6 R. Ascone et al.

Proof. Since resA is monotone [20], we can apply Corollary 4. Therefore, there
exists a global attractor for A if and only if restA(∅) = resn−t

A (S) for some 0 ≤ t ≤
n where n is the cardinality of S. We conclude as in Corollary 5.

3.2 Existence of a global cycle attractor

We begin this section with a result that immediately follows from the Knaster-
Tarki theorem [27] and excludes the existence of a global cycle attractor of length
greater than one in the case of monotone functions. In particular, this implies that
no global cycle attractor of length k ≥ 2 can exist in the dynamics of inhibitorless
reaction systems, as their result function is always monotone [20].

Lemma 7. Let f : 2S → 2S be a monotone function. Then no global attractor
k-cycle exists for any k ≥ 2. Moreover, if U is a global attractor invariant set, then
at least one of the cycles in U is a fixed point.

Proof. By the Knaster-Tarki theorem, monotone functions always have a fixed
point, therefore a global attractor k-cycle cannot exist for k > 1 by Obsservation 2.
For the same reason, if U is a global attractor invariant set, then at least one of
the cycles in U is a fixed point.

The rest of this section provides results on the existence of global attractors
consisting of two fixed points for monotone functions (thus for inhibitorless reaction
systems). These results will be useful in Section 4 to prove the complexity of
deciding on the existence of global cycle attractors in reactantless systems. In
Lemma 8, we prove that for any monotone function, a global attractor consisting
of two fixed points must have a particular form.

Lemma 8. Let f : 2S → 2S monotone and U = {T1, T2} a global attractor
consisting of two fixed points, then U = {fn(∅), fm(S)}, with n,m ≥ 0 such that
fn(∅) = fn+1(∅) and fm(S) = fm+1(S).

Proof. By monotonicity, fn(∅) ⊆ Ti ⊆ fm(S) for i = 1, 2. Suppose for a contra-
diction that the inclusions are both strict: then U would not be a global attractor
by Observation 2, a contradiction. We obtain the statement.

Lemma 8 implies that any global attractor consisting of two fixed points in a
reaction system A ∈ RS(∞, 0) must be of the form {resnA(∅), resmA (S)}. However,
this characterization is not strong enough to give a polynomial time algorithm, and
in Proposition 9 we prove that deciding if resnA(∅) and resmA (S) are the only fixed
points for A is coNP-complete. The proof extends an idea from [24, Theorem 25].

Proposition 9. Given A = (S,A) ∈ RS(∞, 0) such that ∅ and S are fixed points,
it is coNP-complete to decide if ∅ and S are the only fixed points.

Proof. The problem lies in coNP because there exists a simple non-deterministic
algorithm which guesses a state T and then verifies in polynomial time that it
is a fixed point different from ∅ and S. To show coNP-completeness, we reduce
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validity [28] to this problem. Given a Boolean formula φ = φ1∨· · ·∨φm in DNF
over the variables V = {x1, . . . , xn}, let V := {xj : xj ∈ V } and ♡S := {♡i : 1 ≤
i ≤ n}. We define pos(φr) ⊆ V the set of variables that occur non-negated in φr

and neg(φr) ⊆ V the set of variables that occur negated in φr. We then define a
RS A with background set S := V ∪ V ∪ ♡S ∪ {♢} and reactions

(neg(φj) ∪ pos(φj) ∪ ♡S ,∅, {♢}) for 1 ≤ j ≤ m (1)

({xi} ∪ ♡S ,∅, {♡i, xi}) for 1 ≤ i ≤ n (2)

({xi} ∪ ♡S ,∅, {♡i, xi}) for 1 ≤ i ≤ n (3)

({xi, xi} ∪ ♡S ,∅, {♢}) for 1 ≤ i ≤ n (4)

({♢} ∪ ♡S ,∅, S). (5)

Note that ∅ and S are fixed points; furthermore, any T ⊆ S, it falls in one of the
following cases:

1) ♡S ⊈ T . In this case, resA(T ) = ∅, since no reaction is enabled;
2) ♢ ∈ T and ♡S ⊆ T . In this case, reaction (5) is enabled and thus resA(T ) = S;
3) T is of the form Y ∪ ♡S, with Y ⊆ V ∪ V .

Thus ∅ is reached from any state that does not fully contain ♡S, and S from any
state containing both ♡S and ♢. Let us now focus on the states falling in case (3).
For any Y ⊆ V ∪V , we define ♡Y := {♡i : xi ∈ Y ∨ xi ∈ Y } ⊆ ♡S. The following
subcases can happen:

3.1) ∃ i such that both xi, xi ∈ Y . In this case, the i-th reaction of group (4) is
enabled by Y ∪ ♡S, thus ♢ ∈ resA(Y ∪ ♡S); if ♡S ⊆ resA(Y ∪ ♡S) or ♡S ⊈
resA(Y ∪ ♡S), then resA(Y ∪ ♡S) is either in case (1) or (2) above, implying
that res2A(Y ∪ ♡S) ∈ {S,∅};

3.2) ∃ i such that both xi, xi /∈ Y . Then ♡S ⊈ resA(Y ∪ ♡S) since none of the i-th
reactions in groups (2), (3) are enabled, therefore res2(Y ∪ ♡S) = ∅.

3.3) xi ∈ Y ⇔ xi /∈ Y for every 1 ≤ i ≤ n. In this case, Y = X ∪ V \X for
some X ⊆ V , thus it encodes an assignment for φ where the variables in X
are assigned true value and the variables in V \ X are assigned value false.
Note that being φ in DNF, it is satisfied if and only if at least one φi is
satisfied; moreover, any clause φi, being a conjunction of variables, is satisfied
if and only if all of its negated variables are assigned value false and all of
its non-negated variables are assigned value true. Therefore, the assignment
implied by X ∪ V \X satisfies φ if and only if X ∪ V \X ∪ ♡S enables one
of the reactions from the group (1). Hence, if Y = X ∪ V \X satisfies φ then
♢ ∈ res(Y ∪ ♡S), implying res2(Y ∪ ♡S) = S. If instead Y does not satisfy φ
then res(Y ∪ ♡S) = Y ∪ ♡S by reactions of groups (2) and (3).

We conclude that A has no fixed points other than ∅ and S if and only if all the
assignments satisfy φ, ie φ is a tautology. Since the mapping φ 7→ A is computable
in polynomial time, the problem is coNP-hard.
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Since a necessary condition for U = {∅, S} to be a global attractor is that ∅
and S are the only two fixed points, Proposition 9 has the following immediate
corollary.

Corollary 10. Given A = (S,A) ∈ RS(∞, 0) such that ∅ and S are fixed points,
it is coNP-hard to decide if U = {∅, S} is a global attractor.

4 Global Attractors of Reactantless RS

4.1 Existence of a global fixed-point attractor

We begin this section with a characterization of global fixed-point attractors when
the function is antitone. Corollary 12, analogously to Corollary 4 for the monotone
case, will then provide a criterion for deciding the existence of a global fixed-point
attractor for antitone functions in polynomial time.

Proposition 11. Let S be a finite set, f : 2S → 2S antitone and T a fixed point
for f . Then, T is global fixed-point attractor for f if and only if T is a global
fixed-point attractor for f2.

Proof. ⇒ Since T is a fixed point for f , it is also a fixed point for f2. We need to
prove that T is a global attractor for f2, but since for every state T ′ ⊆ S there
exists t ∈ N such that f t(T ′) = T , then (f2)t(T ′) = f2t(T ′) = f2(T ) = T .

⇐ Consider T a global fixed-point attractor for f2. Then it must hold that f(T ) =
T , as otherwise, f(T ) ̸= T would imply that f2(f(T )) = f(T ) and thus f(T )
would be a fixed point for f2 different from T , which is a contradiction by
Observation 2. f(T ) = T implies that T is also a global fixed-point attractor
for f , because for every T ′ ⊆ S, T ′ reaches T in t steps through f2, thus T ′

reaches T in 2t steps through f .

Corollary 12. Given S a finite set and f : 2S → 2S antitone, a global fixed-point
attractor for f exists if and only if there exists a global fixed-point attractor for f2.

Proposition 11 and Corollary 12 can be straightforwardly applied to result
functions of reactantless reaction systems, leading to the following two results.

Corollary 13. Given a RS A = (S,A) ∈ RS(0,∞) and a state T ⊆ S, deciding
if T is a global fixed-point attractor of A is in P.

Proof. Since resA is antitone [20], Proposition 11 applies. Therefore, T is a global
attractor for A if and only if T is a global fixed-point attractor for res2A. Since res2A
is monotone, we can proceed as in the proof of Corollary 5, and decide whether T
is a global attractor simply by evaluating resA at most 2|S| times.

Corollary 14. Given a RS A = (S,A) ∈ RS(0,∞) and a state T ⊆ S, deciding
whether there exists a global fixed-point attractor of A is in P.

Proof. Since resA is antitone [20], Corollary 12 applies, implying that there exists
a global fixed-point attractor for resA if and only if there exists a global fixed-point
attractor for res2A. We conclude as in Corollary 13.
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{b} {a}

∅ {a, b}

(a) A global 2-cycle attractor.

{b} {a}

∅ {a, b}

(b) A global attractor consisting of two
fixed points.

Fig. 1: Representation of the dynamics of Example 16.

4.2 Existence of a global cycle attractor

We begin this section by showing, in Proposition 15, that a global k-cycle attractor
cannot exist for any antitone function for any k > 2: see also Example 16.

Proposition 15. Let U be a global cycle attractor for an antitone function f :
2S → 2S, then there exists T ⊆ S such that either U = {T} or U = {T, f(T )}.
Proof. Let f2(U) := {f2(U) : U ∈ U}; this is a global attractor invariant set for f2.
Suppose U is a (2k+1)-cycle for some k ≥ 0: then f2(U) is also a (2k+1)-cycle.
Since by Lemma 7 every global attractor invariant set for a monotone function
must contain a fixed point, and since f being antitone implies f2 being monotone,
it must be k = 0 and thus U = f2(U) = {T} must be a global fixed-point attractor
for f2. Suppose now U is a (2k)-cycle for some k ≥ 1: then f2(U) consists two
k-cycles. Since one of the two cycles must be a fixed point by Lemma 7, it must be
k = 1 and thus U = {T, f(T )} for some T ⊆ S.

Example 16. Let S = {a, b} and f : 2S → 2S given by:

f(∅) = {a, b}; f({a}) = ∅; f({b}) = {a}; f({a, b}) = ∅.

f is clearly antitone and in the dynamics, we have a global 2-cycle attractor {∅, S}:
see Figure 1a. Consider now f2 : 2S → 2S , given by

f2(∅) = ∅; f2({a}) = {a, b}; f2({b}) = ∅; f2({a, b}) = {a, b}.

f2 has a global attractor consisting of two fixed points, see Figure 1b. ⌟

From the proof of Proposition 15, we deduce that an antitone function f :
2S → 2S has a global 2-cycle attractor if and only if f2 : 2S → 2S has a global
attractor consisting of two fixed points.

The rest of this section is devoted to proving that deciding whether a reac-
tantless RS has a 2-cycle global attractor reduces to the problem of Corollary 10
for inhibitorless systems, and it is, therefore, coNP-hard as well. We begin with
an example that illustrates the workings of the reduction we will later provide in
Theorem 18.

Example 17. Let S = {a, b} and A = (S,A) an inhibitorless reaction system
where A = {({a},∅, {a, b})}. As already seen in Example 16, in the dynamics of
A there are two fixed points that form together a global attractor (same dynamics
as Figure 1b):
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{b} {a}

∅ {a, b}

We want to construct a reactantless reaction system that can reproduce the dy-
namics of A for states ∅ ⊊ T ⊊ S and transform the global attractor of A,
consisting of two fixed points, into a 2-cycle global attractor. We thus construct
B = (S′, B) where S′ = {a, b,♡,♠} and B is given by the following reactions:

(∅, {a,♡}, {a,♡})
(∅, {b,♡}, {b,♡})
(∅, {a,♠}, {a, b,♠})
(∅, {a, b,♡}, {a, b,♡,♠})
(∅, {a, b,♠}, {a, b,♡,♠})
(∅, {♡,♠}, {a, b,♡,♠}).

It is straightforward to verify that resB({b,♠}) = {a,♡} and resB({a,♠}) =
{b,♡}, thus

res2B({b,♠}) = ∅ and res2B({a,♠}) = {a, b,♠}.

Note that in the original inhibitorless RSA we have resA({b}) = ∅ and resA({a}) =
{a, b}, thus B can reproduce the dynamics ofA in two steps starting from the states
{a,♠} and {b,♠} and going through the states the states {a,♡} and {b,♡}. The
last three reactions of B ensure that there is a 2-cycle global attractor, as all the
states except for {a,♠}, {b,♠}, and {b,♡} reach the 2-cycle {∅, S′} in one step,
which makes it a global 2-cycle attractor. The dynamics of B is the following:

{b,♠} {a,♡} {♡}

{a,♠} {b,♡} {a, b,♠} {♠}

{a, b,♡} ∅ {a, b,♡,♠} {a, b}

{a,♡,♠} {b}

{b,♡,♠} {♡,♠} {a}

In Theorem 18, we extend and generalize the construction of Example 17 to
any A ∈ RS(∞, 0) to reduce the problem of deciding whether U = {∅, S} is a
global attractor in inhibitorless reaction systems to the problem of deciding the
existence of a global 2-cycle attractor in reactantless reaction systems.

Theorem 18. Given A = (S,A) ∈ RS(0,∞), deciding if there exists a 2-cycle
global attractor is coNP-hard.
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Proof. We reduce from the problem of deciding if U = {∅, S} is a global attractor
in inhibitorless reaction systems (see Corollary 10). More precisely, given A =
(S,A) ∈ RS(∞, 0) such that ∅ and S are fixed points, we want to construct in
polynomial time a reaction system B ∈ RS(0,∞) such that {∅, S} is a global
attractor for A if and only if there exists a 2-cycle global attractor for B. We
construct a reactantless RS B := (S′, B), with S′ := S ∪ {♡,♠} and B is given by
the following reactions:

(∅, {s,♡}, {s,♡}) for s ∈ S (6)

(∅, Ra ∪ {♠}, Pa ∪ {♠}) for a = (Ra,∅, Pa) ∈ A (7)

(∅, S ∪ {♡}, S ∪ {♡,♠}) (8)

(∅, S ∪ {♠}, S ∪ {♡,♠}) (9)

(∅, {♡,♠}, S ∪ {♡,♠}). (10)

Claim. All states of B of the forms {♠}, {♡}, S ∪ {♡}, S ∪ {♠}, T , and T ∪
{♡,♠}, for all T ⊆ S, reach {∅, S′} in one step. Furthermore, resB(∅) = S′ and
resB(S

′) = ∅.

Proof. We immediately note that for any T ⊆ S we have resB(T ) = S∪{♡,♠} = S′

since reaction (10) is enabled, and resB(T ∪ {♡,♠}) = ∅ since no reaction is
enabled. By reactions (8) and (9), we also have resB({♠}) = resB({♡}) = S ∪
{♡,♠} = S′. Furthermore, since resA(∅) = ∅, then Ra ̸= ∅ for each a ∈ A, thus
resB(S ∪ {♡}) = ∅ since no reaction is enabled, as well as resB(S ∪ {♠}) = ∅.
Finally, since all the reactions are enabled by ∅, and no reaction is enabled by
S′ = S ∪ {♡,♠}, we have that resB(∅) = S′ and resB(S

′) = ∅. See also Figure 2
for a visual representation of the dynamics.

Claim. The states {♠}, {♡}, {♡,♠}, S, S ∪ {♡}, T , and T ∪ {♡,♠}, for all
∅ ⊊ T ⊊ S, cannot be reached from any states.

Proof. We can safely assume that in A there are no reactions of the type (Ra,∅,∅),
because in any case, they do not affect the dynamic of A. Therefore enA(T ) = ∅
if and only if resA(T ) = ∅. This implies that group (7) of the reactions of B does
not contain any reactions of the form (∅, Ra ∪ {♠}, {♠}), implying that the state
{♠} cannot be reached from any state. With a similar reasoning we deduce that
the states {♡}, {♡,♠}, S, and T for all ∅ ⊊ T ⊊ S cannot be reached from any
state as well.

Furthermore, none of the states of the form T ∪ {♡,♠} with ∅ ⊊ T ⊊ S can
be reached from any state: indeed, suppose for a contradiction that resB(T

′) =
T ∪ {♡,♠} for some T ′ ⊆ S′ and ∅ ⊊ T ⊊ S. In order to obtain ♡ in the
product, T ′ must enable some reactions from group (6); and to obtain ♠, it must
also enable reactions from group (7). This implies ♡,♠ /∈ T ′, thus T ′ ⊆ S and
thus, by Claim 18, resB(T

′) = S ∪ {♡,♠}, which is a contradiction because by
hypothesis T ⊊ S. Finally, S ∪ {♡} cannot be reached from any state U because
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T ∪ {♠}

S ∪ {♠} (S \ T ) ∪ {♡} {♡}

S ∪ {♡} {♠}

∅ S ∪ {♡,♠}

{♡,♠} S

T ∪ {♡,♠} T

resA

resA

resA

Fig. 2: Dynamics of the RS B in the reduction of Theorem 18. The states T ,
T ∪{♡,♠}, T ∪{♠} and (S \T )∪{♡} are a synthetic representation of the 2S −2
states (one fore each ∅ ⊊ T ⊊ S) of each type. The boxes around states T ∪ {♠}
and (S \ T ) ∪ {♡} hide the more refined dynamics for those states; dashed arcs
represent the three existing possibilities for the dynamics of the states belonging
to the boxes, as described after Claim 18.

this would require all and only the reactions from group (6) to be enabled in U ,
which can happen only if U = {♠}; but then reaction (8) is enabled as well, and
indeed resB({♠}) = S′ by Claim 18.

It remains to determine the dynamics for the states of the form T ∪ {♠} and
T ∪ {♡} for some ∅ ⊊ T ⊊ S. Because of the reactions from group (6), we obtain

resB(T ∪ {♠}) = (S \ T ) ∪ {♡}; (11)

and because of the reactions from group (7), in turn we have

resB((S \ T ) ∪ {♡}) =

{
resA(T ) ∪ {♠} if enA(T ) ̸= ∅
∅ otherwise,

(12)

since (S \T )∪{♡} enables (∅, Ra∪{♠}, Pa∪{♠}) if and only if (S \T )∩Ra = ∅,
which is the case if and only if Ra ⊆ T and thus T enables (Ra,∅, Pa) in A. As
remarked in Claim 18, we have that resA(T ) = ∅ if and only if enA(T ) = ∅, which
is true if and only if resB((S \ T ) ∪ {♡}) = ∅. We have obtained the following
formula:

res2B(T ∪ {♠}) =

{
resA(T ) ∪ {♠} if enA(T ) ̸= ∅
∅ otherwise.

(13)
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Therefore, iterating (13), if resiA(T ) /∈ {∅, S} for all i = 1, . . . , k, we obtain

res2kB (T ∪ {♠}) = reskA(T ) ∪ {♠} . (14)

Note that the states of the form T ∪ {♡} with ∅ ⊊ T ⊊ S coincide with the
states of the form (S \ T ) ∪ {♡}; in particular, any such state T ∪ {♡} is reached
from (S \ T ) ∪ {♠} by Equation (11), and reaches either ∅ or resA(S \ T ) ∪ {♠}
according to Equation (12). In Figure 2, the states of the form T ∪{♡} and T ∪{♠}
are compactly represented as boxed states, and their dynamics are not completely
represented for the sake of readability.

We observe that the only candidate 2-cycle global attractor for B is {∅, S′}, as
it is a 2-cycle by Claim 18 and it is the only candidate global attractor by Claim 18
and the discussion below its proof. The next claim gives us the thesis.

Claim. {∅, S} is a global attractor for A if and only if {∅, S′} is a global attractor
for B.

Proof. ⇒ Let ∅ ⊊ T ⊊ S: in this case, we already proved in Claim 18 that T
and T ∪ {♡,♠} reach {∅, S′} in one step. By hypothesis, ∃k ∈ N such that
reskA(T ) ∈ {∅, S}. Let k be the minimum number that satisfies this property,
implying that resiA(T ) /∈ {∅, S} for i = 1, . . . , k − 1. Thus we can apply Equa-
tion (14) and obtain

res
2(k−1)
B (T ∪ {♠}) = resk−1

A (T ) ∪ {♠}

Furthermore, applying Equation (11) to this result, we obtain

res
2(k−1)+1
B (T ∪ {♠}) = res2k−1

B (T ∪ {♠}) = S \ resk−1
A (T ) ∪ {♡}.

Since by hypothesis reskA(T ) ∈ {∅, S}, there are two cases: if reskA(T ) = S, then
res2kB (T ∪ {♠}) = S ∪ {♠}, implying that res2k+1

B (T ∪ {♠}) = ∅. Otherwise,

reskA(T ) = ∅, which happens if and only if enA(res
k−1
A (T )) = ∅: in this case,

res2kB (T ∪ {♠}) = ∅ by Equation (13). In any case, T ∪ {♠} reaches {∅, S′}
in at most 2k + 1 steps. For the state T ∪ {♡}, we can reduce to the previous
case using Equation (12). Together with Claim 18, we obtain that if {∅, S} is
a global attractor for A then {∅, S′} is a global attractor for B.

⇐ Let ∅ ⊊ T ⊊ S: by hypothesis, there exists k ∈ N such that reskB(T ∪ {♠}) ∈
{∅, S′}. Let k be the minimum number that satisfies that property. We want
to prove that T is always attracted by {S,∅}. We define two cases, depending
on whether k is even or odd.
1) k = 2m. We have resiA(T ) /∈ {∅, S} for all i = 1, . . . ,m − 1 as otherwise

k = 2m would not be the minimum. Thus we get res2m−1
B (T ∪ {♠}) =

(S \ resm−1
A (T )) ∪ {♡}. Since ∅ ⊊ resm−1

A (T ) ⊊ S, we have ∅ ⊊ S \
resm−1

A (T ) ⊊ S, thus reaction (9) is not enabled by (S \ resm−1
A (T ))∪{♡},

implying in turn that ♡ /∈ res2mB (T ∪ {♠}), and thus res2mB (T ∪ {♠}) ̸=
S ∪ {♡,♠}. But since res2mB (T ) ∈ {∅, S′} then res2mB (T ) = ∅. Suppose
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now for a contradiction that resmA (T ) ̸= ∅: then it would also be res2mB (T ∪
{♠}) = resB((S \ resm−1

A (T ))∪{♡}) ̸= ∅, a contradiction. We deduce that
resmA (T ) = ∅, thus T is attracted by {S,∅}.

2) k = 2m+1. Clearly, resiA(T ) /∈ {∅, S} for i = 1, . . . ,m− 1. Thus we have
res2m−1

B (T ∪ {♠}) = (S \ resm−1
A (T )) ∪ {♡}. Since res2mB (T ∪ {♠}) ̸= ∅

then resmA (T ) ̸= ∅. Thus res2mB (T ∪ {♠}) = resmA (T ) ∪ {♠}. Suppose for a
contradiction that resmA (T ) ⊊ S, then res2m+1

B (T ∪ {♠}) = S \ resmA (T ) ∪
{♡} /∈ {∅, S′}, a contradiction by the definition of k. We deduce that
resmA (T ) = S, thus T is attracted by {S,∅}.

Summing up, we proved that if {∅, S′} is a global attractor for B then {∅, S}
is a global attractor for A.

Claim 18, together with Claim 18, directly implies that there exists 2-cycle global
attractor for B if and only if {∅, S} is a global attractor for A. We also remark that
the map A 7→ B can be constructed in polynomial time. By Corollary 10, deciding
whether {∅, S} is a global attractor is coNP-hard, thus the thesis follows.
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