
Synchronization of rules in membrane computing

Péter Battyányi

Department of Computer Science,
Faculty of Informatics, University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
e-mail: battyanyi.peter@inf.unideb.hu

Summary. In this paper, computational models that are variants of membrane systems
with synchronization of rules in the style of Aman and Ciobanu [1] are considered. We
examine membrane system like computational models in different execution modes and
with reusage and without reusage of objects in the same computational step. The weak
cases are the ones without restrictions on the compound rules. We show in one of the
cases that, as a computational model, it is strictly weaker than Turing machines when
maximally parallel execution mode is omitted. Furthermore, we prove that the strong
cases, when additional conditions are imposed on the compound rules, are computation-
ally complete even without maximal parallelism. Finally, we give a more or less intuitive
argument on why these computational systems with non-cooperative rules cannot be
computationally complete even in the strong modes. Keywords: Membrane systems,
Computational completeness, Rewriting systems

1 Introduction

Membrane systems, or P systems, are biologically inspired models of computation
introduced by Gh. Păun in [9]. The original model is based on a tree-like structure
of nested membranes. The computation proceeds separately in each region: the
membranes or regions have their associated multisets that evolve in accordance
with various rewriting rules specific to each membrane. In most of the cases, the
whole process is synchronized by a global clock: each membrane is waiting for the
other one to finish their computation before a new computational step begins.
Originally, the computation in each membrane follows a maximally parallel mode,
which means that a maximal multiset of rules is applied at the same time, that is,
in each membrane, a multiset of rules is executed simultaneously which is such that
no more rules could have been added to the multiset to maintain the simultaneous
execution property. Several variants of P systems and application modes have been
introduced and studied, we refer the interested reader to the monograph [10] for a
thorough introduction, or the handbook [11] for a summary of notions and results
of the area.

18 P. Battyányi

In this paper, we consider variants of the symbol object P system with several
types of execution mode and forms of rules. Namely, besides the rules of the form
u → v, where u is the multiset to be replaced by the multiset v during a rule
application, we consider synchronized rules in the sense introduced by Aman and
Ciobanu [1, 2]. We pose the question of what is the computational power of these
rules when we consider them with various execution modes and semantics. One
of the execution modes is the unsynchronized or sequential one, where the rules
can be applied one after the other. The other one is the synchronized mode where
a (possibly empty) multiset of rules is executed simultaneously at the same time
in a specific membrane computational step in each compartment. We remove,
however, the requirement for the rule applications of being maximally parallel.
Observe that the unsynchronized mode can be considered as rule executions when
the newly obtained objects can be reused in the next computational step, while
the synchronized mode is such execution of rules where the newly obtained ob-
jects coming from the right hand sides of the rules can only be reused in the next
computational step. Regarding the semantics, we even distinguish two different
interpretations concerning the synchronized rules. We term them weak and strong
application modes. In total, we will talk about four different execution modes:
unsynchronized and synchronized modes with the weak or with the strong appli-
cation mode. It will turn out that the weak application modes are strictly weaker
than the strong ones, the latter ones being equivalent to the computational power
of the Turing machine model.

2 Preliminaries

2.1 Multisets

Let N and N>0 be the set of non-negative integers and the set of positive integers,
respectively, and let O be a finite nonempty set (the set of object). A multiset
M over O is a pair M = (O, f), where f : O → N is a mapping which gives the
multiplicity of each object a ∈ O. If f(a) = 0 for every a ∈ O, then M is the empty
multiset. If f(a) = n > 0, then a ∈ M , or a ∈n M .

Let M1 = (O, f1),M2 = (O, f2). Then (M1 ⊓ M2) = (O, f) where f(a) =
min{f1(a), f2(a)}; (M1 ⊔M2) = (O, f ′), where f ′(a) = max{f1(a), f2(a)}; (M1 ⊕
M2) = (O, f ′′), where f ′′(a) = f1(a)+f2(a); (M1⊖M2) = (O, f ′′′) where f ′′′(a) =
max{f1(a)− f2(a), 0}; and M1 ⊑ M2, if f1(a) ≤ f2(a) for all a ∈ O. We abbreviate
M ⊕M ⊕ . . .⊕M︸ ︷︷ ︸

k

as k ·M .

The number of copies of objects in a finite multiset M = (O, f) is its cardinality:
card(M) = Σ{a|f(a)>0}f(a). Such an M can be represented by any string w over
O for which |w| = card(M), and |w|a = f(a) where |w| denotes the length of the
string, and |w|a, or simply w(a), denotes the number of occurrences of the symbol
a in w.

Synchronization of rules in membrane computing 19

We define the MSn(O), n ∈ N, to be the set of all multisets M = (O, f) over
O such that f(a) ≤ n for all a ∈ O, and we let MS<∞(O) =

⋃
n≥0 MSn(O).

Moreover, if A is an arbitrary set, we define A≥k = ∪∞
n=kA

n, where A0 = ∅,
A1 = A and An = A× . . .×A︸ ︷︷ ︸

n

for n ≥ 2.

If O is a set of objects and u, v ∈ MS<∞(O), we call the (u, v) a rule over O.
In what follows, we write MS(O) in place of MS<∞(O) since we will exclusively
deal with finite multisets.

2.2 Symbol object P systems of degree 1

Since the concepts that we will study in the sequel are in compliance with the
construction of flattening of membrane systems [3], in the sequel, we restrict our
attention to membrane systems of degree 1. Below, we provide the definition of a
symbol object P system of degree 1.

A P system of degree 1 is a tuple Π = (O,w0, R) where O is an alphabet of
objects, w0 ∈ MS(O) is the initial content of the region, R is the set of (evolution)
rules associated with region 1. They are of the form u → v, where u, v ∈ MS(O).
We assume that the result of the computation is collected from membrane 1 in the
form of a multiset of certain terminal objects. A computation gives a result when
it comes to a halt. For a rule r = u → v ∈ Ri, we write lhs(r) for u and rhs(r) for
v. A configuration w is the actual multiset content of membrane 1.

2.3 P systems with synchronized rules

In this subsection we present the various versions of P systems with synchronized
rules. A P system with with rule synchronization, or P system with synchronized
rules, (of degree 1) is a tuple Π = (O,w0, (R, ρ)), where Π = (O,w0, R) is a P
system of degree 1 and ρ ⊆ R≥2. For any element (r1, r2, . . . , rk) of ρ, where ri ∈ R
(1 ≤ i ≤ k), we use the notation r = r1⊗r2⊗ . . .⊗rk and we call r a synchronized
rule, or a compound rule, and ri its components (1 ≤ i ≤ k). Let comp(r) denote
the set of components of r. We term r ∈ R a single rule if it is not a synchronized
one. In the sequel, we consider P systems with rule synchronization of degree 1.
We say that a rule r ∈ R is non-cooperative if it is of the form a → v for some
a ∈ O. Otherwise, r is said to be cooperative. Similarly, a rule ρ = r1 ⊗ . . .⊗ rk is
non-cooperative if each of r1, . . . , rk is of the form a → v for some object a ∈ O.

We clarify how rule execution can be understood in P systems Π = (O,w0, (R, ρ))
with rule synchronization. We distinguish two kinds of rule application modes-
weak and strong application modes-, and two possibilities for dealing with objects
appearing on the right hand side of rules: we can either allow reusing objects
created by a rule application or prohibit this in the same computational step.
The latter corresponds to the original interpretation in membrane computation.
In total, we deal with four possible ways to interpret P systems with synchro-
nized rules. Let w be a configuration of Π. In what follows, we describe how the

20 P. Battyányi

next configuration w′ emerges from w. Let r ∈ R be a single rule or let r be
a component of a compound rule r′. Then we say that r is applicable in w if
lhs(r) ⊑ w. An application of a single rule involves the replacement of w with the
multiset w′ = w ⊖ lhs(r)⊕ rhs(r). The applicability and the result of application
of compound rules will be clarified in the respective execution modes.

Definition 1.

(W1)(Weak application mode with reusage of objects.) Reusage of objects means
there is no synchronization in the P system, the rules are applied in a sequential
manner. Let us clarify what application of a rule means in the specific cases. Let
r = u → v ∈ R. Then r is applicable if u ⊑ w. In this case, the result of applying
r to w is obtained by removing form w the objects of u and adding the objects of
v to w⊖u. Now, let r = r1⊗ r2⊗ . . .⊗ rn ∈ ρ, where ri = ui → vi (1 ≤ i ≤ n).
Then r is applicable iff all of its components are applicable as single rules. When
this is the case, an application of r consists of applications of the components of
r an arbitrary number of times provided all of them are applied at least once.
Moreover, an object emerging on the right hand side of a component can be
reused even if the execution step of r has not finished yet. More formally, let
r = r1⊗r2⊗ . . .⊗rn ∈ ρ. Then r is applicable if u1⊕ . . .⊕un ⊑ w. In this case,
the result of the application, w′, is obtained through a sequence of intermediate
configurations w1, w2, . . . , wk, where w = w1 →r′1 w2 →r′2 . . . →r′k−1 wk = w′

and wj+1 = wj ⊖ lhs(r′j) ⊕ rhs(r′j) (1 ≤ j ≤ k) and each of r1, . . . , rn occurs
in the sequence r′1, . . . , r

′
k at least once. We call the configurations w and w′

proper and the configurations w2, . . . , wk−1 intermediate ones. The transitions
wj →r′j wj+1 are small step transitions (1 ≤ j ≤ k − 1), while the transition
yielding w′ from w is a big step transition. In notation: w ⇒r

w,y w′.
(W2)(Weak application mode without reusage of objects.) In this case, a big step

comprises the simultaneous application of several single or compound rules in
the compartments. When all the membranes has finished working, only then
can the next computational step begin. The objects coming from the right hand
side of the rules can be used only in the next big computational step. Formally,
let R be a multiset over the set of rules R ∪ ρ. We define multisets, sub(R)
and add(R) over O. Firstly, let r = u → v ∈ R. Then sub(r) = lhs(r) = u
and add(r) = rhs(r) = v. On the other hand, if r = r1 ⊗ . . . ⊗ rn ∈ ρ, let
ri = ui → vi (1 ≤ i ≤ n). Then sub(r) =

⊕n
i=1 ki ·ui and add(r) =

⊕n
i=1 ki ·vi,

where ki ≥ 1 (1 ≤ i ≤ n). We write sub(R) =
⊕

{sub(r) | r ∈ R} and
add(R) =

⊕
{add(r) | r ∈ R} and we set w′ = (w ⊖ sub(R))⊕ add(R).

(S1)(Strong application mode with reusage of objects.) This application mode de-
mands that the application of rules, being either single or compound ones, takes
place in a sequential way. The only difference regarding application mode (W1)
is the different interpretation of the compound rules. Let r ∈ R be a single rule.
Then r is applicable if lhs(r) ⊑ w and, in this case, w′ = w ⊖ lhs(r)⊕ rhs(r).
On the other hand, let r = r1 ⊗ r2 ⊗ . . .⊗ rn ∈ ρ. Then r is applicable to w0 in
the strong sense if at least one of r’s components is applicable. When this holds,

Synchronization of rules in membrane computing 21

we apply r by searching from left to right the first applicable component r′. Af-
ter executing r′, we resume searching for an applicable component of r starting
from the first component. More formally, r is applicable if lhs(ri) ⊑ w0 for some
1 ≤ i ≤ n. Then an application of r is described by the following sequence of
intermediate configurations: w0 →r′1 w1 →r′2 w2 . . . →r′k wk = w′, where r′i is of
minimal index i among the components of r applicable to wi−1 (1 ≤ i ≤ k). No
component is applicable to w′ = wk. The transitions wi−1 →r′i wi (1 ≤ i ≤ k)
are called small steps regarding the application of r in the strong sense with
reusage of objects, while the process yielding w′ form w is called a big step. In
notation: w ⇒r

s,y w′. The configurations w and w′ are proper.
(S2)(Strong application mode without reusage of objects.) It differs the above mode

only in the treatment with the objects coming form the right hand side of the
components during an execution of a compound rule. In plain words, a com-
pound rule r is executed by searching for the first applicable component with
the smallest index. Then the component is executed as a single rule, i.e., we
subtract the multiset on the left hand side from the actual configuration and add
the multiset on the right hand to the result of the subtraction. Then we start
searching for the applicable component with the smallest index in the emerging
new multiset. This process stops until there are no more applicable components.
More precisely, let r ∈ R. Then let the result of the transition w ⇒r

s,n w′ be the
multiset w′ = w⊖ lhs(r)⊕ rhs(r). Suppose r ∈ ρ. Then we define the multisets
lhs(r), rhs(r) by giving three sequences of multisets u0, u1, . . ., v0, v1, . . . and
w0, w1, . . . simultaneously. Let u0 = ε, the empty multiset, and let v0 = w0 = w.
Assume ui, wi, vi are already defined for some i ∈ N. Let r′ be the component
of r that is the first one from left to right which is applicable to wi. Then
ui+1 = ui ⊕ lhs(r′) and wi+1 = w ⊖ ui+1, vi+1 = vi ⊕ rhs(r′). We continue
if at least one component of r is applicable, that is, we calculate the i + 2-th
elements of the sequences if lhs(r′′) ⊑ wi+1 for some r′′ ∈ comp(r). Let m
be the first index for which this is not case. Then we denote lhs(r) = um and
rhs(r) = vm. We have w′ = w ⊖ lhs(r)⊕ rhs(r), and we write w ⇒r

s,n w′.

Let us illustrate the definition by demonstrating the operation of a P system
with synchronization of rules in the strong application mode with reusage of objects
(S2).

Example 1. Let Π = (O,w0, (R, ρ)) be a P system with synchronization of rules,
where n = 1, O = {a, b, d, e}, w0 = anbm, and R = {r1 = adm → embm, r2 =
ab → da, r3 = b → ε}. Let ρ = {r = r1 ⊗ r2 ⊗ r3}. Let us consider a terminating
computation starting from w0 = anbm in mode (S2). We assume n,m ≥ 1. Let the
subscripts of the arrows denote the components of r applied.

anbm →∗
r2 andm →r1 an−1embm →r2

an−1embm−1d →∗
r2 an−1emdm →r1 an−1e2mbm →r2

. . .

ae(n−1)mbm−1d →∗
r2 ae(n−1)mdm →r1 enmbm →∗

r3 enm

22 P. Battyányi

In what follows, let w stand for the actual configuration of our membrane. In the
example above, when the multiset w contains less than m d’s, then the successive
applications of the component r2 remove one copy of b and add a d to w. The new
copies of d add to the configuration. In the case when dm ⊑ w, r1 is applicable and,
hence, it must be applied. This means an erasure of one copy of a and introducing
em and bm to w. The computation proceeds in this way until all the a’s are
consumed. At this point, w = enmbm. Now only r3 can be applied, which yields
the removal of bm from w.

3 The power of synchronized rules in P systems

We turn to a brief discussion of the computational power of synchronization of
rules in P systems with respect to the above application modes. We treat first
the case of weak application modes. In this section, we present some results and
provide their short justifications or we give hints on how they can be achieved.

3.1 Synchronized rules with the weak application mode

In this subsection we examine P systems with synchronization of rules using the
weak application mode. It turns out that P systems with application mode (W1)
are not computationally complete, and we formulate a conjecture for a similar
statement on P systems with application mode (W2). In the case of application
mode (W1), that is, the weak application mode with reusage of objects, we show
that compound rules can be substituted for ordinary rules of a P system such that
the multisets computed by the two P systems will be the same.

Proposition 1. Let Π = (O,w0, (R, ρ)) be a P system of degree 1 with synchro-
nization of rules using execution mode (W1). Then there exists a P system Π ′ of
degree 1 without synchronization of rules applying the sequential mode such that
Π ′ and Π compute the same sets of vectors.

Proof. Let Π = (O,w0, (R, ρ)) be as above. Let us define Π ′ in the following way.
Let us add to O a finite set of new objects as described below:

O′ = O ∪ {ω, κ, ϑr
1, . . . , ϑ

r
kr

| r = r1 ⊗ . . .⊗ rkr
∈ ρ}.

Let w′
0 = w0⊔{ω, ϑr

1 | r ∈ ρ}. We obtain R′ as follows. Firstly, we add the following
single rules to R for any r = r1 ⊗ . . . ⊗ rk ∈ ρ. Let ri = ui → vi (1 ≤ i ≤ k). We
define the rules:

Synchronization of rules in membrane computing 23

r′1 = ωu1ϑ
r
1 → κv1ϑ

r
1,

r′′1 = κu1ϑ
r
1 → κv1ϑ

r
2,

r′2 = κu2ϑ
r
2 → κv2ϑ

r
2,

r′′2 = κu2ϑ
r
2 → κv2ϑ

r
3,

. . .

r′k = κukϑ
r
k → κvkϑ

r
k,

r′′k = κukϑ
r
k → ωvkϑ

r
1.

We add the rule κ → κ to R′. Moreover, if r = u → v ∈ R, then we let
r′ = ωu → ωv ∈ R′. It is easy to check that Π ′ = (O′, w′

0, R
′) produces the same

set of multisets as Π. □

Regarding the case of (W2), i.e., weak application mode without reusage of
objects we believe that the computational power is strictly weaker than that of
Turing machines. We assert this as a conjecture. We think that a P system with
application mode (W2) can be simulated with a forbidding context grammar with
λ-rules.

Conjecture 1. Let Π = (O,w0, (R, ρ)) be a P system of degree 1 with synchro-
nization of rules applying execution mode (W2). Then there exists a forbidding
context grammar GΠ with λ-rules such that Ps(Π) = Ps(GΠ).

3.2 Synchronized rules with the strong application mode

Now we continue with our investigation with synchronization of rules in the strong
application mode. We demonstrate that generalized P systems with synchronized
rules in the strong application mode can compute any Turing computable, or in,
other words, partial recursive function. To this end, we simulate register machines
with zero-test subtraction with P systems applied with the strong application
mode. We recall briefly the definition of such register machines.

A register machine is a tuple W = (m,H, l0, lh, Inst), where m is the number
of registers, H is the set of instruction labels, l0 is the start label, lh is the halting
label, and Inst is the set of instructions. There is a bijection between the labels of
H and the instruction of Inst. The following types of instructions can be used. For
li, lj , lk ∈ H and r ∈ {1, . . . ,m} we have:

• li : (ADD(r), lj , lk) - nondeterministic add: Add 1 to register r and then go to
one of the instructions with labels lj or lk, nondeterministically chosen.

• li : (SUB(r), lj , lk) - zero check and subtract: If register r is empty, then go to
the instruction with label lj , if r is non-empty, then subtract one from it and
go to the instruction with label lk.

• lh : HALT - halt: Stop the machine.

A computation of a register machine starts with all registers empty except for
some designated input registers. The control flow is regulated by the labels shown

24 P. Battyányi

in the actual instruction of the machine. The machine starts with the instruction
labeled l0. If the machine reaches the halt instruction lh : HALT, then it stops, and
the number stored in the first register, or in the output registers fixed in advance, is
the result of the computation. Note that our register machine is a nondeterministic
computing device. In this case, it is suitable for computing sets of natural numbers
when we consider the outcomes of the various computations.

We consider the two computation modes, (S1) and (S2), separately. Firstly, we
deal with (S1), that is, strong computation mode with reusage of objects.

Theorem 1. Generalized P systems with synchronized rules in the strong appli-
cation mode with reusage of objects can simulate arbitrary register machines with
zero-test subtractions, even without using the maximally parallel rule execution. We
may even assume that the P system is a purely catalyctic one with a three-state
catalyst.

Proof. Let W = (m,H, l0, lh, Inst) be a register machine. Fpr the sake of simplic-
ity, we assume that W has one output register, let this be register 1, W computes
a number instead of a vector, and, in addition, W starts its computation with all
registers initially empty. We construct a P system Π of degree 1 with synchroniza-
tion of rules using execution mode (S1) such that, at every computational step,
the number stored in register i of W is represented by the number of the object
ai in the only region of Π and, upon halting, Π provides the result by producing
the same number of copies of object a1 as the number stored in register R1 of W .

We define Π as a purely catalyctic P system with a three-state catalyst. We
have to take care that the execution mode allows us reusing elements created during
a rule application, in contrast with common practice in membrane systems. Let
Π = (O,w0, (R, ρ)), where

O = {l | l ∈ H} ∪ {ar | 1 ≤ r ≤ m} ∪ {c, c′, c′′},
w0 = l0c,

R = RAdd ∪RSub ∪RHalt,

where

Synchronization of rules in membrane computing 25

RAdd = {r(i,1) = cli → cljar, r(i,2) = cli → clkar,

r′′(i,1) = c′′li → c′′ljar, r
′′
(i,2) = c′′li → c′′lkar | for all

li : (ADD(r), lj , lk) ∈ Inst},

RSub = {ro(i,1) = car → c′, ro(i,2) = c′li → c′′lj , r
o
(i,3) = cli → c′′lk,

re(i,1) = c′′ar → c′, re(i,2) = c′li → clj , r
e
(i,3) = c′′li → clk

| for all li : (SUB(r), lj , lk) ∈ Inst},

RHalt = {clh → c, c′′lh → c′′},

ρ = {ρoi = ro(i,1) ⊗ ro(i,2) ⊗ ro(i,3), ρ
e
i = re(i,1) ⊗ re(i,2) ⊗ re(i,3) | li : (SUB(r), lj , lk)}.

We give a brief explanation of how Π simulates a computation of W . The
initial configuration corresponds to the initial configuration of W , since the first
region contains l0, the label of the starting instruction, and W commences its
operation with the assumption that all registers are initially empty. The label of
the next instruction, together with copies of the objects ar (1 ≤ r ≤ m), are to
be found in membrane 1, the only membrane of Π. There are two sets of rules
with respect to the SUB instruction: they correspond to the odd and even turns
of the applications of SUB. When in the instruction sequence the SUB has been
called an even number of times, the next execution will be governed by a ρ-rule
with superscript ”o”. Otherwise, it is the turn of the ρ-rules with superscript ”e”.
This will be detailed below. We describe the next step of the simulation process by
taking into account the different cases. Let conf denote the actual configuration
of Π, that is, the content of membrane 1.

• li : (ADD(r), lj , lk). The applications of the corresponding rules of Π introduce
the label representing the next instruction of W in Π, adding one copy of ar to
conf at the same time. We distinguish the different cases regarding the actual
number of SUB instructions applied before calling instruction li.

• li : (SUB(r), lj , lk). Assume an even number of SUB has already been applied
and it is the turn of the instruction li. Then c ∈ conf , and the rule ρoi is
executed. If ar ∈ conf , then the object c′ is introduced and, in the next step,
li is transformed to lk and c′ is exchanged with c′′. At this point, the operation
of ρoi halts and the simulation of the instruction labelled lk can commence.
If ar /∈ conf , then ro(i,1) cannot be applied, instead, a copy of c′′ and lk is
introduced using ro(i,3). If li emerges as an even turn of an application of SUBs,
then c′′ ∈ conf and a process similar to the above one can be executed.

• lh : HALT. Then lh is removed and the computation of Π comes to a halt.

Obviously, the P system Π halts if and only if the register machine W halts
and, at this point, the number of copies of the object a1 and the number stored in
the first register of W are the same. □

26 P. Battyányi

We formulate a similar statement asserting the possibility of simulation register
machines with P systems in application mode (S2). In this case, it is enough to
consider a purely catalyctic P system with bistable catalyst for the simulation.
Since the proof is very much like in the case of application mode (S1), we just
state the result without proof.

Theorem 2. Generalized P systems with synchronized rules in the strong appli-
cation mode without reusage of objects (S2) can simulate, without using the max-
imally parallel rule execution, arbitrary register machines with zero-test subtrac-
tions, even when we consider purely catalyctic P systems with a bistable catalyst.

Proof. Similar to that of the previous theorem. This time we do not need to
consider alternating turns in the application of instruction SUB, hence, the proof
even simplifies a little. □

The above proofs demonstrate the fact that P systems with synchronization of
rules and the strong application mode are able to simulate register machines either
with reusage or without reusage of objects. The question naturally arises how far
can we go in the simplification of rules constituting the P system. In what follows,
we assert a claim saying that non-cooperative rules are not enough for ensuring
computational completeness. We omit the more or less intuitive argument for the
claim, however, it already provides us with a string justification that the statement
holds. We formulate our assertion for the case (S1) only, the case for (S2) being
similar, mutatis mutandis.

Theorem 3. Let Π be a P system of degree 1 with synchronization of rules, with
non-cooperative rules of execution mode (S1). Then Π is not computationally com-
plete.

Proof. [Sketch] The intuitive argument relies on the fact that Π cannot compute
the sg function, where

sg =

{
1 if n = 0,
0 otherwise.

More precisely, we show that, if O = {a1, . . . , an} is the object set and c =
(c(a1), . . . , c(an)) is a corresponding configuration of Π, when we are given two
configurations c′ and c′′ such that c′ ⊑ c′′ as multisets, then Π cannot evolve
on c′ and c′′ such that, upon halting, the reverse relation would hold. I.e., when
c′′ ⇒∗ c′′ and c′′ is a hlating configuration then there exists a halting configuration
c′ such that c′ ⇒∗ c′. Since Π computes a function, it cannot be the case that the
result for the input c′ is represented by a configuration c for which c ⊑ c′′ does
not hold. □

4 Concluding remarks

• The problems discussed in the paper stem from a specific membrane system
defined by Aman et al. [1]. Our results partly deviate from the usual membrane

Synchronization of rules in membrane computing 27

system notions by examining rule applications with the possibility of reusage
of elements even in the same computational step. The execution modes (W1)
and (S1) could have equally been formulated for computational models with
this property, e.g., for Petri nets.

• In some programming languages, like SML [4], lines are processed from top to
bottom. This imports lends some control facilities to program execution. The
present results are in accordance with this experience of programmers: the weak
application mode could be associated with a purely declarative philosophy of
program execution, while the strong application mode can be related to an
implementation where the order of instructions matter. Our result intimates
that setting up an order of execution for the rules adds computational strength
to the programming language implementation.

• The P systems constructed for the simulation of register machines look very
much like generalized communicating P systems (GCPS) in appearance [5].
GCPSs posses a graph-like structure, where each node, called a cell, contains
a multiset of objects which may move between the cells by the so-called com-
munication rules. A communication rule has the form (a, i)(b, j) → (c, k)(d, l),
where a, b, c, d are objects and i, j, k, l represent the input and output regions,
respectively. Depending on the values of the identifiers i, j, k, l, several re-
stricted forms of interaction rules can be specified. Generalized communicating
P systems mostly obey the maximally parallel rule execution mode. It can be
shown that, in most of the cases, GCPSs are Turing complete even with a
set of restricted form of interaction rule and taking a relatively small, fixed
number of cells [5]. Computational completeness is preserved when we consider
an alphabet with one object and rules of restricted types or only as many as
three cells together with rules of restricted types [6, 7]. It would be interesting
to explore the similarities and differences between GCPSs and the computa-
tional model defined in this paper and obtain results of an analogous nature
by restricting the form of the rules, the number of cells or the number of ob-
jects. We would emphasize the main difference between the two computational
models: with synchronization of rules Turing completeness is achieved without
additional control facilities in the strong application mode, namely, without
imposing the necessity of maximally parallel execution mode. Hence, results of
somehow different types should be expected in our case.

References

1. Aman, B., Ciobanu, G., Synchronization of rules in membrane computing. Jour-
nal of Membrane Computing 1, 233–240 (2019). https://doi.org/10.1007/s41965-019-
00022-1

2. Aman, B., Ciobanu, G., The power of synchronizing rules in membrane computing,
Information Sciences 594, 360–370 (2022)

3. Agrigoroaiei, O., Ciobanu, G., Flattening the transition P systems with dissolu-
tion In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds)

28 P. Battyányi

Membrane Computing. CMC 2010. LNCS, vol 6501. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-18123-8_7

4. Blume, M.,: The SML/NJ Compilation and Library Manager. Lucent Technologies,
Bell Labs (2002). https://www.smlnj.org/doc/CM/new.pdf

5. Csuhaj-Varjú, E., Verlan, S.: On generalized communicating P systems with min-
imal interaction rules. Theoretical Computer Science 412(1-2), 124–135 (2011),
https://doi.org/10.1016/j.tcs.2010.08.020.

6. Csuhaj-Varjú, E., Verlan, S.: Computationally Complete Generalized Communicat-
ing P Systems with Three Cells. In: Gheorghe, M., Rozenberg, G., Salomaa, A.,
Zandron, C. (eds.) Membrane Computing. CMC 2017. LNCS, vol 10725. Springer,
Cham. https://doi.org/10.1007/978-3-319-73359-3_8

7. Csuhaj-Varjú, E., Vaszil, G., Verlan, S.: On Generalized Communicating P Systems
with One Symbol. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa,
A. (eds) Membrane Computing. CMC 2010. Lecture Notes in Computer Science, vol
6501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18123-8_14

8. Alhazov, A., Belingheri, O., Freund, R., Ivanov, S., Porreca, A. E., and Zandron, C.
(2016). Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems.
In: Proceedings of 17th International Conference on Membrane Computing (CMC17),
39–56 http://hdl.handle.net/20.500.12708/56909

9. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

10. Păun, G.: Membrane Computing: An Introduction. Springer-Verlag, Berlin, Heidel-
berg (2002)

11. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA (2010)

	Synchronization of rules in membrane computing
	 Péter Battyányi

