
(Very) Initial Ideas on Non-cooperative
Polymorphic P Systems and Parallel
Communicating ET0L Systems

Anna Kuczik and György Vaszil

Faculty of Informatics, University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
kuczik.anna@inf.unideb.hu

vaszil.gyorgy@inf.unideb.hu

Summary. In this research, we begin to investigate the relationship between polymor-
phic P systems and parallel communicating ET0L systems. Our goal is to present an
example, based on the definitions, from which it seems that there is some connection
between the two systems.

Key words: Polymorphic P systems, P systems with non-cooperative rules, par-
allel communicating grammar system, parallel communicating ET0L systems

1 Introduction

Membrane systems (P systems) are computational models whose computation is
based on the processes taking place in living cells. They consist of several nested
membranes, these are called regions. The contents of the regions are multisets.
In each step, we apply rule(s) in each region (if applicable), so we apply multiple
rewriting rules in parallel until we reach a halting configuration.

The difference between polymorphic P systems and P systems is the relation-
ship between multisets and rules. In polymorphic P systems, the contents of the
regions form the rules. As the contents of the regions change, the corresponding
rules also change, we call these dynamic rules. Each rule has two regions that make
up the left and right sides of the rule. For more information, see the survey [1].

The results of the article [2] demonstrate the power of the model. in the case of
using cooperative rules, any recursively enumerable set of numbers is generated.
As a result, we deal with the non-cooperative case, which generates languages,
interesting, mainly from the point of view that exponential, even super-exponential
growth of the number of objects within the system can be achieved.

In this article, we begin to investigate the relationship between non-cooperative
polymorphic P systems and parallel communicating ET0L systems. In the follow-

30 A. Kuczik, G. Vaszil

ing, after the necessary preliminaries and definitions in section 2, we present an
example in section 3. Through this example, we show that it is possible that some
kind of relationship exists between the two models, based on the definitions. We
create a parallel communicating ET0L system that simulates the computation of
a simple non-cooperative polymorphic P system.

2 Preliminaries and Definitions

In this section, we define the basic definitions and notions we will use. For more
information about formal language theory, see [3], and [4, 5] for details about
membrane computing.

First, we define the formal alphabet. An alphabet V is a finite non-empty set
of symbols called letters. A string (or word) over V is a finite sequence of letters,
the set of all strings over V is denoted by V ∗, and V + = V ∗ \{λ} where λ denotes
the empty string. If we fix an order V = {a1, a2, . . . , an} of the letters, then the
vector (|w|a1

, |w|a2
, . . . , |w|an

) is called the Parikh vector of the word w ∈ V ∗.
If N denotes the set of nonnegative integers, then a multiset over a set U is a

mapping M : U → N where M(a), for all a ∈ U , is the multiplicity of element a in
the multiset M . If U is finite, U = {a1, a2, . . . an}, then M can also be represented

by a string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n (and all permutations of this string) where

aj denotes the string obtained by concatenating j ∈ N occurrences of the letter
a ∈ V (with a0 = λ).

A. Lindenmayer introduced Lindenmayer systems (L systems for short) in 1968.
He introduced these systems with the aim of being able to describe the development
of organisms known from biology using formal languages. L systems are parallel
rewriting systems, see [6, 7] for more information on this area.

In the following, we define a version of the L systems, the ET0L systems, which
are extended, tabled, and interactionless versions of the original L systems.

An ET0L system is a quadruple G = (V, T, U, ω) where V is an alphabet, T ⊆ V
is a terminal alphabet, ω ∈ V + is the initial word of G, and U = (P1, . . . , Pm)
where Pi, 1 ≤ i ≤ m, are finite sets of context-free productions over V (called
tables), such that for each a ∈ V , there is at least one rule a → α, α ∈ V ∗ in each
table.

In each computational step, G rewrites all the symbols of the current sentential
form with the rules of one of the tables in U . The language generated by G consists
of all terminal strings which can be generated in a series of computational steps
(a derivation) starting from the initial word.

Let L(G) be the language generated by G, then L(G) = {u ∈ T ∗ | w ⇒∗ u}
where ⇒ denotes a computational step , and ⇒∗ is the reflexive and transitive
closure of ⇒.

We are not interested in the character string generated by the ET0L system
as a sequence of letters, but only in the multiples of the different letters, i.e. the
Parikh vectors of the words. This is necessary because we will connect the ET0L

(Very) Initial Ideas on Non-cooperative Polymorphic P Systems . . . 31

languages to the multiset languages of the P systems. We denote by Ps(G) the set
of Parikh vectors corresponding the strings of L(G) (Parikh set of L(G)), and by
PsET0L the class of Parikh sets corresponding to the class of languages generated
by ET0L systems.

Polymorphic membrane systems were introduced in [2]. The rules in polymor-
phic P systems are defined by the contents of specific membrane regions corre-
sponding to the left- and right-hand sides of the rule. As a result, the rules be-
longing to the regions change(s) during the computation. These rules are called
dynamic rules.

A polymorphic P system is a tuple

Π = (O, T, µ, ws, ⟨w1L, w1R⟩ , . . . , ⟨wnL, wnR⟩ , ho),

where O is the alphabet of objects, T ⊆ O is the set of terminal objects, µ is the
membrane structure consisting of 2n+1 membranes labelled by a symbol from the
set H = {s, 1L, 1R, . . . , nL, nR}, the elements of the multiset ws are the initial
contents of the skin membrane, the pairs of multisets ⟨wiL, wiR⟩ correspond to the
initial contents of membranes iL and iR, 1 ≤ i ≤ n, and ho ∈ H is the label of
the output membrane.

The rules of the polymorphic membrane system are not given statically in
the initial configuration. In each step, they are dynamically derived based on the
contents of the left and right (iL and iR, 1 ≤ i ≤ n) membrane pairs. Thus, if the
membranes iL and iR belonging to the i-th membrane pair contain multisets u
and v respectively, then in the next step we transform their parent membrane as
if the multiset rewriting rule u → v were present.

If there is at least one rule in a system Π where the number of objects in u (the
multiset on the left-hand side) can grow to be greater than one, then we say that
Π is a cooperative system, otherwise, it is a non-cooperative system. The P system
is a series of computational steps in which the rules belonging to the given region
are applied in a maximal parallel way. Each object can be rewritten by at most
one rule in one step. The P system reaches a halting configuration when no rule
can be applied in any of the regions, so no more computational steps are possible.

The set of vectors N(Π) generated by the polymorphic P system Π with
the terminal alphabet T is the set of Parikh vectors among the strings w ∈ T ∗

corresponding to the output ho of multisets of terminal objects appearing in the
region in a halting configuration Π, which is reached by computation starting in
the initial configuration of the system.

We need the finitely representable (FIN-representable) property to define
the possible objects belonging to the regions of the membrane system. FIN-
representable property were introduced in [8]. Before describing the finitely repre-
sentable property, we need a definition of σ∗.

Let Π = (O, T, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨wnL, wnR⟩, ho) be a polymorphic P
system, and let wj,h denote the multiset after the jth step of the computa-
tion contained by the region labelled by h of Π for some j ≥ 0, where h ∈
{s, 1L, 1R, . . . , nL, nR}. We say that w′

j,h is in the successor set of wj,h, denoted

32 A. Kuczik, G. Vaszil

as w′
j,h ∈ σj,h(wj,h), if w

′
j,h can be obtained from wj,h by the maximally parallel

applications of the multiset rewriting rules associated to the region h.
If for the same wj,h as above, we fix σ0

j,h(wj,h) = {wj,h} for k ≥ 0 and for any

j ≥ 0, we have σk+1
j,h (wj,h) = σj+k,h(σ

k
j,h(wj,h)) , then we can define

σ∗
j,h =

⋃
k≥0

σk
j,h(wj,h).

Given a polymorphic P system (Π), a region h of Π is finitely representable
(or FIN − representable) if, starting from wh, the multiset of initial objects of h,
the set of successor multisets of wh is finite, σ∗

0,h(wh) is finite.
We will need the definition of a finite transition system. Later on, we can

represent the rules for the regions of the membrane system with state transitions.
An finite transition system M can be denoted as a triple M = (Q, q, δ) where Q
is a finite set of states, q ∈ Q is the initial state, and δ : Q → 2Q is the state
transition mapping. A state q′ ∈ δ(q) is called the successor state of q, and q ∈ Q
is called a halting state if δ(q) = ∅.

Parallel communicating grammar systems with Lindenmayer systems as com-
ponents were introduced in [7]. In the following we recall the definition of parallel
communicating ET0L systems (PC ET0L systems for short) based on [9].

A parallel communicating grammar system with n components is a (n+3) tuple

Γ = (N,K, T,G1, . . . , Gn), where

N is a nonterminal alphabet, T is a terminal alphabet and K is an alphabet of
query symbols (K = {Q1, Q2, . . . , Qn}). N,K and T are pairwise disjoint sets.
In case the components are Lindenmayer systems, then Gi = (N ∪ K,T, Pi, ωi),
where 1 ≤ i ≤ n with nonterminal and terminal alphabets as above, a table of
rewriting rules in case of ET0L systems Pi, and an axiom ωi ∈ (N ∪ T)∗. In most
cases we call G1 the master grammar of Γ .

The language generated by a parallel communicating system of extended Lin-
denmayer systems, Γ = (N,K, T,G1, . . . , Gn), where Gi = (N ∪ K,T, Pi, ωi),
1 ≤ i ≤ n, is

L(Γ) = {α1 ∈ T ∗|(ω1, . . . , ωn) ⇒∗ (α1, . . . , αn)}
where G1 is the master grammar of Γ .

3 Polymorphic P systems vs. PC ET0L systems

In this chapter, we start to examine the relationship between general non-
cooperative polymorphic P systems and parallel communicating ET0L systems.

Using the definitions introduced in the previous chapter, we would like to show
that probably the PC ET0L systems can generate the same class of languages as
non-cooperative polymorphic P systems. Let’s examine an example in which we
construct a PC ET0L system for a non-cooperative polymorphic P system.

(Very) Initial Ideas on Non-cooperative Polymorphic P Systems . . . 33

2 : a → a
3 : a → b
4 : b → d
5 : d → d
6 : d → gf

7 : e → de
8 : e → c

1L

1R

a

e

bba
S

Fig. 1: The polymorphic P system Π of Example 1

Example 1. Consider a non-cooperative polymorphic P system

Π = (O, T, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨w8L, w8R⟩, s)

where O = T = {a, b, c, d, e, gf} and the membrane structure is

µ = [[. . .]1L [. . .]1R]s,

where the child membranes of 1L are []2L []2R . . . []6L []6R, the children of 1R
are []7L []7R, []8L []8R.

Let
ws = bba, w1L = a, w1R = e,

and using the simplified notation for static (non-dynamic) rules, let the rules cor-
responding to 1L be

r2 : a → a, r3 : a → b, r4 : b → d, r5 : d → d, r6 : d → gf ,

and the rule corresponding to 1R be r7 : e → de, r8 : e → c, as illustrated in
Figure 1.

According to the non-cooperative property, in each step 1-1 letter changes
in 1L. In the following we show that 1L is FIN-representable. Concerning 1L,
observe that σ∗

0,1L(a) = {a, b, d, gf} with σ0,1L(a) = σj,1L(a) = {a, b}, σ0,1L(b) =
σj,1L(b) = {d}, σ0,1L(d) = σj,1L(d) = {d, gf}, and σ0,1L(gf) = σj,1L(gf) = ∅ for
all j ≥ 0.

The 1R region is not FIN-representable, but from the point of view of the task,
for us, the examination of the stopping of the regions on the right is not essential.
It is sufficient that the FIN-representable property is true for the left sides, which
will be true in all cases due to the non-cooperative property.

The skin region is not FIN-representable, as the dynamical rule r1 given by the
membranes labelled with 1L and 1R has more than one symbol on its right-hand
side in each computational step, and this means that the number of symbols in
the skin region is increasing with each rule application.

Following the steps introduced in [8], starting from the deepest (static) rules of
the membrane system, we create the transition systems for the regions. To simplify

34 A. Kuczik, G. Vaszil

the example, we do not create transition systems for the static rules, but we know
that they are the basis of the transition systems created for the higher levels. Due
to the non-cooperativity and the FIN-representable property, a transition system
can be constructed for each left-side membrane. Based on this, let’s construct a
transition system for the 1L region.

Start with the construction of M2...6 = (R2...6, r2...6, δ2...6) as

• R2...6 = {r̄2...6} where
• r̄2...6 = (r̄2, . . . , r̄6) with r̄2 = ((a, ∅), (a, ∅)), r̄3 = ((a, ∅), (b, ∅)),

r̄4 = ((b, ∅), (d, ∅)), r̄5 = ((d, ∅), (d, ∅)), r̄6 = ((d, ∅), (gf , ∅)), and
• δ2...6(r̄2...6) = ∅.
Note that the rule set corresponding to r̄2...6 is {r2, r3, r4, r5, r6} = {a → a, a →
b, b → d, d → d, d → gf}.

Now we can construct M1L transition system as follows: M1L = (Q1L, q0, δ1L),
where the set of possible states is Q1L = {a, b, d, gf}× {(r̄2, r̄3, r̄4, r̄5, r̄6)}, that is,

Q1L = {q0 : (a, (r̄2, r̄3, r̄4, r̄5, r̄6)), q1 : (b, (r̄2, r̄3, r̄4, r̄5, r̄6)),

q2 : (d, (r̄2, r̄3, r̄4, r̄5, r̄6)), q3 : (gf , (r̄2, r̄3, r̄4, r̄5, r̄6))},
the initial state is q0, and the transition mapping is defined as

δ1L(q0) = {(q0), (q1)},
δ1L(q1) = {(q2)},
δ1L(q2) = {(q2), (q3)},
δ1L(q3) = ∅.

It follows from this transition map that the state that starts with gf is a final
state. This shows that the 1L region is FIN-representable.

Construct a PC ET0L system that simulates the operation of the polymor-
phic membrane system. During construction, the current states of the FIN-
representable regions must be recorded in PC ET0L sentential form.

Let us consider a PC ET0L system Γ = (N,K, T,Gs1L, G1R, Gm, Gc), simu-
lating this membrane system.

In the following |Pi| denote the number of tables in Pi, and Pi,j denote the
j-th table of Pi, 1 ≤ i ≤ n, 1 ≤ j ≤ |Pi|. |Ps1L| = 4, |P1R| = 1, |Pm| = 1, |Pc| = 1.
Let

N = {q0, q1, q2, q3, F, S1R, Sm, Sc} non-terminals,

K = {Q1R, Qs1L, Qc} query symbols and

T = {a, b, c, d, e, } terminals.

The initial string of the Gs1L component be ωs1L and the associated tables are
as follows:

(Very) Initial Ideas on Non-cooperative Polymorphic P Systems . . . 35

ωs1L = bbaq0,

Ps1L,1 = {q0 → q0, q0 → q1, q1 → F, q2 → F, q3 → F, a → Q1R},
Ps1L,2 = {q1 → q2, q0 → F, q2 → F, q3 → F, b → Q1R},
Ps1L,3 = {q2 → q2, q2 → q3, q0 → F, q1 → F, q3 → F, d → Q1R}
Ps1L,4 = {q3 → q3, q0 → F, q1 → F, q2 → F}

The initial string of the G1R component be ω1R and the associated tables are
as follows:

ω1R = S1R,

P1R,1 = {S1R → e, e → de, e → c}.

The initial string of the Gm component be ωm and the associated tables are
as follows:

ωm = Sm,

Pm,1 = {Sm → Sm, Sm → Qs1L, q3 → Qc, x → F |x ̸= q3},

The initial string of the Gc component be ωc and the associated tables are as
follows:

ωc = Sc,

Pc,1 = {Sc → Sc, Sc → Q1R, x → λ, e → F |x ∈ (c, d)},

In the case of P systems, we denote the current states as follows: (u, v, w),
where u denotes the contents of s, v denotes the contents of 1L and w denotes the
contents of 1R. To simplify the example, static regions are not marked separately,
since their content is always constant. With this triple, we only consider those
regions whose contents change.

The initial configuration is based on the construction of the P system, we can
choose between two rules (rule 2 and rule 3) for the object a in 1L during the first
step. Consequently, there are two different cases. Let’s examine both cases. First,
let’s look at an example where Π applies r2 : a → a during steps 1 and 2, and the
rule 3 .

(bba, a, e) ⇒(1,2,7) (bbe, a, de) ⇒(−,2,7)

(bbe, a, dde) ⇒(−,3,8) (bbe, b, ddc) ⇒(1,4,−)

(ddcddce, d, ddc) ⇒ . . .

36 A. Kuczik, G. Vaszil

The triple index above the arrows are the numbers of the currently applied
rules in each region. For example: (bba, a, e) ⇒(1,2,7) (bbe, a, de) means, that we
used rule 1 in s, rule 2 in 1L and rule 7 in 1R.

So we start with (bba, a, e), apply r1 : a → e rule in s, rule 2 in 1L and rule 7
in 1R. After applying these rules, the regions change as (bbe, a, de). At this point
we are not able to apply rule 1 in s, but we can use rule 2 or rule 3 in 1L, rule 7
or 8 in 1R. Use rule 2 and rule 7: (bbe, a, dde). We (still) cannot apply rule 1 in s,
apply rule 3 in 1L and rule 8 in 1R: (bbe, b, ddc). Apply rule 1 in s, rule 4 in 1L:
(ddcddce, d, ddc).

In the case of PC ET0L systems, we denote the current strings of components
as follows: (us1L, u1R, um, uc), where us1L denotes the sentential form of Gs1L,
where s index denotes the content of S in Π and 1L index denotes the content of
1L region in Π, u1R denotes the sentential form of G1R, um denotes the sentential
form of Gm, uc denotes the sentential form of Gc.

We simulate the steps performed by the polymorphic P system:

(bbaq0, S1R, Sm, Sc) ⇒(1,1,1,1) (bbQ1Rq0, e, Sm, Sc) ⇒com

(bbeq0, e, Sm, Sc) ⇒(1,1,1,1) (bbeq0, de, Sm, Sc) ⇒(1,1,1,1)

(bbeq1, dde, Sm, Sc) ⇒(2,1,1,1) (Q1RQ1Req2, ddc, Sm, Sc) ⇒com

(ddcddceq2, ddc, Sm, Sc) ⇒ . . .

The quadruple index above the arrows (except for arrows for communication
steps) are the indexes of the currently applied tables in each component. For
example: (bbaq0, S1R, Sm, Sc) ⇒(1,1,1,1) (bbQ1Rq0, e, Sm, Sc) means, that we used
the first tables in all components.

Start with (bbaq0, S1R, Sm, Sc), apply a → Q1R and q0 → q0 rules from Ps1L,1

in GS1L, S1R → e rule from P1R,1 in G1R, and Sm → Sm, Sc → Sc from Pm,1

and Pc,1 in Gm an Gc (apply these rules until the end of the calculation). With
the appearance of the Q1R query symbol, a communication step follows (⇒com

denotes the communication steps). In the communication step, with the help of
Q1R, we can insert the sentential form from G1R into Gs1L.

Following the further steps, it can be seen that the same values appear in
component Gs1L as in the s region in Π2.

With the help of query symbols, PC ET0L can simulate the rewriting of the
contents of s in the P system in one step + one communication step.

Let’s look at an example where the P system applies rule 2 during step 1 and
rule 3 during step 2, i.e. r2 : a → a first, and then r3 : a → b.

(bba, a, e) ⇒(1,3,7) (bbe, b, de) ⇒(1,4,7) (dedee, d, dde) ⇒(1,5,7)

(ddeeddeee, d, d3e) ⇒(1,5,8) (d3ed3eeed3ed3eeee, d, d4e) ⇒ . . .

Similar to the previous example, by taking one step + one-communication
steps, the PC ET0L simulates the steps of the polymorphic P system.

(Very) Initial Ideas on Non-cooperative Polymorphic P Systems . . . 37

(bbaq0, S1R, Sm, Sc) ⇒(1,1,1,1) (bbQ1Rq1, e, Sm, Sc) ⇒com

(bbeq1, e, Sm, Sc) ⇒(2,1,1,1) (Q1RQ1Req2, de, Sm, Sc) ⇒com

(dedeeq2, de, Sm, Sc) ⇒(3,1,1,1) (Q1ReQ1Reeq2, dde, Sm, Sc) ⇒com

(ddeeddeeeq2, dde, Sm, Sc) ⇒(3,1,1,1)

(Q1RQ1ReeQ1RQ1Reeeq2, ddde, Sm, Sc) ⇒com

(d3ed3eeed3ed3eeeeq2, ddde, Sm, Sc) ⇒ . . .

As we can see in the previous two examples, we can assuem that PC ET0L can
simulate the first few steps of the Polymorphic P system in the subsequent steps
using the appropriate tables.

In general the configuration of the polymorphic P system can be denoted by a
triple, where α is the content of S, x is the content of 1L, a single object due to
the non-cooperative property, and β′ is the content of 1R:

(α, x, β′) where α = α1xα2x . . . xαk

then we can denote the triple as follows: (α1xα2x . . . xαk, x, β
′).

In general the configuration of the PC ET0L system can be denoted with a
4-tuple, with its components. The sentential form of the first component: us1L,
in which s index means that this component contains the content of s and 1L
index means that this component also contains the content of 1L. The sentential
form of the second component: β, where β is the ancestor of β′ appearing in
the polymorphic P system. The sentential form of the third component: Sm, the
content of Gm, and the sentential form of the fourth component: Sc, the content
of Gc

(us1L, β, Sm, Sc) where us1L = α1xα2x . . . xαkqi,

then the four component can be denoted as follows:

(α1xα2x . . . xαkqi, β, Sm, Sc) where

the x’s are denotes the first components of qi (i.e., a, b, d, or gf).
In the case of this general construction, examine how the content of the P

system changes after one step. Apply the first rule, which is x → β′, to the content
of s, i.e., the first element of the triple. Apply a rule to x from the applicable rules
of 1L, if it exists, let x’s successor be x′. Similarly for β′, apply a rule from the
applicable rules of 1R, if it exists, let β′’s successor be β′′:

(α1xα2x . . . xαk, x, β
′) ⇒ (α1β

′α2β
′ . . . β′αk, x

′, β′′).

In order for the PC ET0L system to be able to simulate this step, it must take
one step and one communication step. In the first component, applying the rule
corresponding to x, it rewrites the x’s to the query symbols Q1R. In parallel, apply
one of the following applicable rules to qi , the same one that the polymorphic P

38 A. Kuczik, G. Vaszil

system applied to 1L. In the second component, apply one of the following applica-
ble rules to β, the one that transforms β′. In the third and fourth component, apply
Sm → Sm and Sc → Sc rules. This step is followed by the communication step.
In accordance with the PC ET0L, the content of the corresponding component, in
this case the content of the second component, G1R, is copied to the place of the
query symbols in the first component. The content of the second component is β′,
which is the same as the right side of rule 1 applied in the polymorphic P System.
It can be seen that the content of the first component of Γ (α1β

′α2β
′ . . . β′αkq

′
i)

is the same as the content of s and 1L after one step in the P system:

(α1xα2x . . . xαkqi, β, Sm, Sc) ⇒
(α1Q1Rα2Q1R . . . Q1Rαkq

′
i, β

′, Sm, Sc) ⇒com

(α1β
′α2β

′ . . . β′αkq
′
i, β

′, Sm, Sc).

The polymorphic P system reaches a halting state when there are no rules in
any region that can be applied to its content. In this example, the system reaches
the halting configuration when there are no applicable rules for the contents of
1L, 1R and s.

In 1L region, the computation stops, after applying rule (d → gf). In 1R region,
the computation stops, after applying rule (e → c).

After applying (d → gf) in 1L, rule 1 can never be applied in s again.
In general, we can say that the polymorphic P system is in a halting state if

its configuration:

(α, gf , d . . . dc).

Then α is the word (multiset) generated by the polymorphic P system.
To generate the α with the PC ET0L system we need Gm and Gc components.

The Gm and Gc components apply the corresponding Sm → Sm, Sc → Sc rules as
long as the calculation is in progress. In order to generate α, the rule Sm → QS1L

must be applied in Gm if the symbol q3 appeared in GS1L. In parallel, we apply
the rule Sc → Q1R in Gc:

(αq3, β, Sm, Sc) where β = dd . . . dc

(αq3, β, Sm, Sc) ⇒ (αq3, β,QS1L, Q1R) ⇒com

(αq3, β, αq3, β) ⇒

Then, after the communication step, the rules of the Pm,1 table belonging to
the Gm component and the Pc,1 table belonging to the Gc can be applied.

In Gc, c → λ and d → λ rules, delete all c and d letters. If the rules Sm → Qs1L,
Sc → Q1R were applied at the appropriate time of the calculation, all values of
the Gc component will be deleted by these rules.

(Very) Initial Ideas on Non-cooperative Polymorphic P Systems . . . 39

It is important to delete only those letters for which there is no rule, i.e., they
will no longer change.

If the process stops at an inappropriate time, then at least one letter e must
remain in 1R, that cannot be deleted, and apply the rule e → F , which results in
an error.

After the deletions, apply the q3 → Qc in the Gm component; if there is x in
α where x ̸= q3, then apply the x → F rule. A trap letter will appear, indicating
that the calculation was incorrect.

If the letter F does not appear and the entire content of the Gc component has
been deleted, then after the communication step, the content of the Gm component
(the master) will be α, which is an accepted word consisting of terminal letters.

(αq3, β, αQ
′
0, λ) ⇒com

(αq3, β, α, λ).

4 Conclusion

Based on the example developed in section 3, we can assume that, using similar
methods, we can create a PC ET0L system that can simulate its operation for
other, even more complex, deeper non-cooperative polymorphic P systems. Our
work is an initial step in finding the relationship between non-cooperative poly-
morphic P systems and parallel communicating ET0L systems.

Acknowledgements

Supported by the University of Debrecen Scientific Research Bridging Fund (DE-
TKA).

References

1. Alhazov, A., Ivanov, S., Freund, R.: Polymorphic P systems: A survey. Bulletin of
the International Membrane Computing Society 2 (2016) 79–101

2. Alhazov, A., Ivanov, S., Rogozhin, Y.: Polymorphic P systems. In Gheorghe, M.,
Hinze, T., Păun, G., Rozenberg, G., Salomaa, A., eds.: Membrane Computing. Vol-
ume 6501 of Lecture Notes in Computer Science., Berlin, Heidelberg, Springer-Verlag
(2011) 81–94

3. Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin Heidelberg (1997)

4. Păun, G.: Membrane Computing: An Introduction. Springer-Verlag, Berlin, Heidel-
berg (2002)

5. Păun, G., Rozenberg, G., Salomaa, A., eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

40 A. Kuczik, G. Vaszil

6. Lindenmayer, A.: Mathematical models for cellular interactions in development I.
Filaments with one-sided inputs. Journal of Theoretical Biology 18(3) (1968) 280–
299

7. Păun, G.: Parallel communicating systems of L systems. In: Lindenmayer systems: im-
pacts on theoretical computer science, computer graphics, and developmental biology.
Springer Science and Business Media, Berlin, Heidelberg (1992) 405–418

8. Kuczik, A., Vaszil, G.: Simple variants of non-cooperative polymorphic P systems.
Journal of Membrane Computing (to appear)

9. Vaszil, G.: On parallel communicating lindemayer systems. In Păun, G., Salomaa, A.,
eds.: Grammatical Models of Multi-Agent Systems. Volume 8 of Topics in Computer
Mathematics., Gordon and Breach Science Publishers (1999) 99–112

