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Summary. The intersection of human behavior and epidemiology is a focal point for un-
derstanding infectious disease dynamics, particularly highlighted by epidemic outbreaks
such as COVID-19. This research introduces an epidemiological model, derived from the
principles of membrane computing, then inspired by biological processes, to analyze the
intricate interplay between societal behavior and disease transmission. The model, struc-
tured hierarchically with Eco-Membranes, Province-Membranes, and Place-Membranes,
facilitates the simulation of diverse geographical and social environments, capturing the
complex dynamics of infectious diseases within various demographic segments. In this
innovative approach lies the integration of mathematical functions to articulate societal
responses to infection rates and vaccination willingness. These functions are based on
the ratio of infected individuals to the total population, vaccine efficacy, and duration
data sourced from multiple studies. The inclusion of demographic characteristics, societal
behaviors, response to infections, and vaccination dynamics provides a multi-dimensional
view of disease spread, especially under the lens of the COVID-19 pandemic. Through
comprehensive simulations, the model examines scenarios incorporating different behav-
ioral responses and intervention strategies, including vaccination dynamics. Sensitivity
analysis confirms the robustness of the model, revealing the critical parameters that in-
fluence the spread of the virus, thus providing valuable insights for targeted public health
interventions.

Keywords: Epidemiological Modeling, Membrane Computing, Behavioral Epidemi-
ology, Infectious Diseases, COVID-19, Vaccination Dynamics.

1 Introduction

In epidemiology of infectious diseases, the emergence of objection to vaccination
against some diseases such as measles and the ongoing COVID-19 pandemic [1] has
emphasized the critical need for innovative and adaptable modeling approaches.
Traditional models [2], while providing valuable insights, often fall short in captur-
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ing the complex interplay between human behavior and disease spread dynamics
[3]. To address this limitation, a new discipline known as Behavioral Epidemiology
of Infectious Diseases has emerged [3, 4], aiming to integrate social science concepts
with infection transmission models [3, 4]. This facilitates a deeper understanding
of the complex interplay between human behavior and disease spread.
The present study employs the paradigm of membrane computing [5], inspired by
biological processes, to offer a new perspective on behavioral epidemiology mod-
eling. By employing a hierarchical structure comprising Environment, Provinces
and places are modeled by membranes, this model enables detailed simulation
of geographical areas and public places. Each Province-Membrane encompasses
Place-Membranes representing specific locations such as schools, workplaces, hos-
pitals, and common areas, while objects within the simulation environment denote
elements like time indicators and individual characteristics. Central to our model
is the societal behavior response to infections, the vaccination dynamics and the
incorporation of demographic characteristics. Our approach provides insights into
disease spread dynamics, particularly in the context of COVID-19. The model
explicitly includes societal behavior responses to infection rates and vaccination
willingness, considering factors like the ratio of infected individuals to the to-
tal population. Additionally, data on vaccine effectiveness [6] and duration from
various sources are incorporated to realistically model infection spread [7]. By in-
corporating infection rules, evolution dynamics, and daily routines for different
demographic groups, the model provides a comprehensive framework for model-
ing infection dynamics and daily behaviors within various scenarios. Overall, this
study explores the application of Membrane Systems to epidemiological research,
aiming to develop an integrated behavioral epidemiology model that accurately
represents infectious disease transmission dynamics, and intervention strategies
while considering the influence of human behavior.

2 Model Description in P System

The proposed model employs a hierarchical structure consisting of Eco-Membrane,
Province-Membranes, and Place-Membranes, facilitating detailed simulation of ge-
ographical areas or public places. This hierarchical setup enables to corectly rep-
resent the intricate interplay of locations and activities that are central to an
individual’s everyday routine. This approach allows for the simulation of spatial
and social dynamics pertinent to disease spread. Specifically, within each province
membrane, key establishments such as schools, workplaces, hospitals, and common
areas transitional spaces connecting different regions are delineated [8] by mod-
elling them as Place-Membranes contained in the Province-Membranes. Objects
represent elements within the simulation environment such as time indicators and
individual characteristics. Key objects are included as; Hour (Houri), Infection
Number (ϕ), Day (di), and demographic categories like Young (g), Adult (a), and
Elderly (an). The role of human behavior in modulating (e.g. by means of sponta-
neous and forced social distancing ) is embedded by means of appropriate function
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Ψ(M) that describes societal behavior response to infection rates, where M is an
information index [3, 4] modeling the information individual has concerning the
spread of the disease.

As far as the disease control, in the model is included the possibility that a
vaccination campaign is enacted as well as the possible partial adherence to the
campaign due to objection to vaccination. The model introduces a function ω(M)
to represent willingness to get vaccinated, considering as information index the
ratio of infected individuals to the total population [3, 4]. Vaccine effectiveness
and duration of the immunity given by the vaccine are incorporated to model
infection reduction realistically.

The LOIMOS framework [1] categorizes infection rates based on immunity and
symptoms, applied across various environments like common areas, schools, work-
places, etc. Rules consider factors like day, time, infection probability, vaccination
status, and mask usage. Infection probability is calculated on the base of current
infections, total individuals, and a decreasing function modeling contagiousness.
Virus incubation lasts for 05 days after contact, transitioning individuals to an
infected state. After incubation, infection progresses through 07 days, followed by
recovery. Recovery grants natural acquired immunity, akin to a perfect vaccine,
lasting for 180 days. Daily schedules are outlined for young individuals, workers,
and the elderly, including activities in common areas, schools, workplaces, and
homes. Rules govern movement between locations, such as entering schools or
workplaces and returning home. Elderly individuals engage in tasks in common
areas with probabilities for different durations and return home afterward. These
rules and routines provide a comprehensive framework for modeling infection dy-
namics, evolution, and daily behaviors within the scenario, incorporating various
factors contributing to disease spread and progression. We built our model and
software by adapting the LOIMOS framework [1], namely adding mobility and be-
havioral response. Technical details of the above illustrated membrane system are
focused on a submitted paper which is not published yet (however it may be made
available upon request): in the following of this work instead we emphasize the
simulation work, which advanced aside the theoretical development of the model.

3 Implementation of the model

The implementation of the model is guided by the objective of creating a simu-
lation framework for infectious diseases using P Systems theory, integrating dy-
namic and behavioral logic into a baseline derived from prior research. The model
draws inspiration from, and goes significantly beyond, the work by Baquero and
coworkers [1]. The keys aspects in this model are membrane structure forms the
basis for organizing a hierarchical structure of a generic epidemiological scenario.
This involves dividing a geographical region into Province-Membranes and fur-
ther subdividing them into Place-Membranes. Entities within the model, such as
individuals and contextual resources, are represented using object-oriented logic.
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This facilitates the mapping from P Systems to a programming language, treating
individuals as singular programming objects with their parameters. A well-defined
membrane structure enables the modeling of different compartments of the sce-
nario, organizing relevant aspects of the epidemiological scope efficiently. Rules
in the P Systems approach represent computations, encapsulating processes like
infection progression, human movement, and vaccination. These rules are trans-
lated into methods and functions within the model. The model can extend beyond
COVID-19 to other communicable diseases by adjusting parameters related to con-
tagion and infection progression. New behavioral logics, demographic information,
and intervention strategies can also be incorporated.The model is scaled to rep-
resent larger scenarios by adding more individuals and expanding the geographic
scope. The simulation aspect can also scale up to handle larger computational
loads by parallelizing the simulation process. The foundation laid by these works
informs the development of a comprehensive epidemiological model based on P
Systems. The model’s adaptability and scalability enable it to evolve beyond its
initial scope, accommodating new disease parameters, variations in agent behavior,
and different intervention strategies. Additionally, the membrane structure and ob-
jects within the model are defined through specialized classes. Membranes such as
schools, workplaces, hospitals, and common areas are represented, each containing
individuals as instances of the Individual class. Attributes and functionalities of
Province-Membrane and Place-Membrane classes facilitate the management of ge-
ographical regions and local environments, while the Individual class encapsulates
attributes and functionalities relevant to individual agents. Behavioral logic, inte-
grated with vaccination logic for convenience, calculates factors such as caution and
vaccination willingness based on the current epidemiological situation. Functions
within the Behavioral Logic class handle the assignment of vaccine effectiveness
and correlate it with duration. The model’s design is grounded in theoretical con-
cepts from P Systems theory and informed by empirical findings [6]. Through care-
fully the implementation of membrane structures, objects, and behavioral logic,
the model provides a versatile framework for simulating and analyzing infectious
disease dynamics. Sensitivity analysis plays a pivotal role in unveiling the param-
eters that significantly influence the dynamics of virus transmission, thus offering
invaluable insights for crafting targeted intervention strategies [4]. By focusing on
parameters identified as having high impacts through both local and global sen-
sitivity analyses, public health officials can enhance their efforts in mitigating the
spread of infectious diseases [9]. This approach is especially critical in overcoming
the hurdles posed by data collection challenges and uncertainties surrounding pa-
rameter values. The combined insights from sensitivity analysis and the developed
models shed light on the multifaceted nature of viral transmission, emphasizing
the necessity of addressing multiple transmission pathways and environmental in-
fluences. Together, they form a comprehensive framework that not only aids in
understanding the complexity inherent in the spread of viral infections but also
serves as a cornerstone for forecasting outbreak patterns and formulating effec-
tive public health responses. This integrated perspective underscores the critical
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need for a holistic approach to disease control, encompassing a broad spectrum
of interventions and a deep understanding of the disease ecology. The software is
designed to model the spread and control of infectious diseases by simulating var-
ious epidemiological scenarios. It focuses on recognizing and validating dynamic
patterns of infectious diseases and providing evolutionary predictions in various
scenarios. The model is structured to utilize Membrane Systems, which are inspired
by the functioning of biological cells. It incorporates hierarchical representation of
environments, describes the movement of individuals in these environments, and
models biological processes like the incubation and infection of viruses [1]. The
model aims to provide a framework for better understanding the dynamics of in-
fectious diseases through simulation results and validating the predictive capacity
of the model against given scenarios.

4 Validations of the Results

The effectiveness of the model in predicting the dissemination of infectious diseases
has been assessed, focusing on the progression trends of the illness over an ex-
tended period, particularly concerning prevalence and mortality rates. Important
factors for the validation phase are highlighted in the following. This analysis aims
to delve into the outcomes of different scenarios, starting from a scenario where
there is minimal behavioral response to the disease and no implemented control
measures. The objective is to first investigate the epidemic’s behavior under these
specific conditions and evaluate the model’s capability to accurately reflect the
patterns of the outbreak. Introducing a few infected individuals into an entirely
susceptible population results in an initial rapid increase in cases. Given the sce-
nario of low adherence to preventive measures and the absence of any intervention
strategies, the basic reproduction number, R0, is expected to surge beyond 1 or 2
swiftly, affecting most of the population and eventually stabilizing the epidemic.
Without incorporating vital dynamics into the model, the infection is predicted to
eventually cease.

In Figure 1, the results of this first scenario are reported. The x-axis represents
time in days, from day 0 to day 365, covering a full year, while the y-axis represents
the prevalence, which is the number of individuals who are currently infected with
the disease at any given time. The curve itself peaks relatively early in the time
span, with the highest prevalence occurring around day 50. The peak prevalence is
shown to be just over 6,500 cases, which is the maximum number of individuals who
are simultaneously infected during the outbreak. After the peak, the prevalence
rapidly decreases, indicating that the number of new daily infections drops as the
population either recovers or succumbs to the disease. The graph returns to near-
zero prevalence after the peak, suggesting that the epidemic subsides, and that
the disease no longer actively spreads within the population. The graph depicts a
rapid, unvarying increase at the outset, leading to a reach of approximately 7000
cases of infection around the 24th day of the model run-through.
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Fig. 1: A simulated epidemic curve showing the prevalence of an infectious disease
over time in a population.

Fig. 2: Trend of new daily cases over the course of a year for an infectious disease
outbreak within a population of 30,000 individuals.

In Figure 2, the number of new daily cases are reported, over a one-year period
(365 days). The curve spikes sharply, with a peak suggesting that the highest
number of new daily cases occurs around day 50. The peak indicates that the
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number of new daily cases rises to slightly over 1300. After the peak, the curve
shows a steep decline, signifying a rapid drop in the number of new daily cases.
Post-peak, the number of new cases gradually approaches zero, suggesting the
outbreak is subsiding.

Fig. 3: Cumulative number of deaths over a year in a population of 30,000 indi-
viduals during an infectious disease outbreak.

In Figure 3, the y-axis indicates the cumulative number of deaths. The curve
shows a rapid rise in deaths early on, reaching a plateau of just over 350 deaths
around day 50. Following the step initial increase, the curve flattens, indicating
that no further deaths are recorded after reaching the plateau.

Figure 4 reports two graphs. The top graph (New Daily Cases Over Time)
marked with blue dots, indicates the number of new cases reported each day.
There are two distinct peaks, suggesting two separate waves of infection. The
first peak occurs before day 50 and rapidly declines, but not to zero, indicating
that the infection was controlled but not eradicated. The second wave starts to
rise around day 150 and peaks higher than the first, before declining again. The
pattern suggests a relapse or a second outbreak, possibly due to a relaxation of
preventive measures or the emergence of a more contagious variant. The bottom
graph (Prevalence Over Time) marked with red dots, illustrates the total number
of active cases at any given time. Like the new daily cases graph, there are two
peaks. The first peak is sharp, indicating a rapid increase in active cases, which
then declines rapidly, possibly due to recovery or death of patients. The second
peak follows the rise in the new daily cases graph, indicating a second wave of active
infections. However, the second prevalence peak is not as sharp as the first, which
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Fig. 4: Progression of an infectious disease over time, measured in days, as seen in
two different metrics: new daily cases and prevalence.

may suggest a slower rate of transmission or a more effective response to the second
wave. Both graphs together show a disease that has at least two significant periods
of transmission. The time between the peaks could indicate successful intervention
measures that temporarily contained the spread of the disease, a period of lower
transmission rates, or possibly the time it took for the disease to resurge or for
a different strain to spread. The graphs do not decline to zero, suggesting the
disease continues to persist in the population beyond the timeframe shown. The
peaks and troughs of these graphs would be of significant interest in analyzing the
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effectiveness of public health interventions, the natural behavior of the disease,
and the response of the public to the presence of the disease over time.

Fig. 5: Epidemiological curves depicting the spread of a disease over time.

In Figure 5, the graph plotted with blue dots shows the number of new cases
reported each day. The x-axis represents time in days, and the y-axis represents the
number of new daily cases. There are two peaks observed, suggesting two separate
waves of the disease. The first peak occurs just before day 50, and the second
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peak is around day 225. The error bars on the dots may indicate the variability or
uncertainty in the daily case counts.

The second graph (Prevalence Over Time) shows the prevalence of the disease
over time. The x-axis is consistent with the first graph, indicating time in days.
The y-axis shows the prevalence, which is typically the number of active cases at
a given time. Similar to the first plot, two peaks are observed, corresponding to
the two waves of new cases. The prevalence peaks are also around day 50 and day
225, shortly after the peaks in new cases. The prevalence curve suggests that as
new cases rise, the number of active cases (prevalence) also rises. As new cases
drop, so does the prevalence.

In our exploration of disease spread dynamics, we delved into several critical
factors that significantly impact the control and progression of infectious diseases.
Through simulations, we analyzed the effect of varying levels of vaccination cover-
age on the temporal spread of disease, providing valuable insights into the efficiency
of vaccination campaigns in curbing outbreaks. Additionally, we investigated the
influence of the population’s behavior, quantified through the caution parameter,
on disease transmission. This analysis underscored the profound effect that col-
lective behavioral changes have on slowing the spread of infections. Finally, by
comparing infection peaks across scenarios with and without behavioral interven-
tions, we highlighted the tangible benefits of public adherence to recommended
preventive measures. These explorations collectively affirm the multifaceted ap-
proach needed in managing infectious diseases, emphasizing the synergy between
vaccination efforts and public behavior in controlling and eventually overcoming
disease outbreaks.

Plot in Figure 6 shows the number of infections over a year with different levels
of vaccination coverage (10%, 50%, and 90%). As expected, higher vaccination
coverage significantly reduces the peak and spread of infections, demonstrating
the importance of vaccination in controlling an outbreak.

Plot in Figure 7 examines the effect of different levels of public caution on
disease spread, modeled by caution parameters of 0.5, 1, and 2. A higher caution
parameter, indicating increased preventive behaviors by the population, results in
a lower peak of infections and a delayed outbreak, highlighting the effectiveness of
public health measures and behavioral adjustments.

Plot in Figure 8 compares the progression of the disease in scenarios with no
interventions versus those with behavioral interventions, such as increased public
caution. It clearly illustrates that behavioral interventions can significantly reduce
the peak and overall number of infections, underscoring the critical role of public
behavior in managing infectious disease outbreaks.

The model effectively captured the rapid initial surge in both prevalence and
new daily infections, subsequently transitioning into a consistent prevalence rate.
The mortality pattern echoes that of the prevalence, suggesting a delay between
the spike in infections and ensuing deaths. Without any intervention measures, the
epidemic achieves equilibrium, with the prevalence stabilizing post the initial swift
increase. Cumulatively, these outcomes affirm the model’s proficiency in emulating
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Fig. 6: Effect of Varying Levels of Vaccination Coverage on Disease Spread Over
Time.

Fig. 7: Impact of Caution Parameter on Disease Spread Dynamics.
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Fig. 8: Comparison of Infection Peaks with and without Behavioral Interventions.

the dissemination of infectious diseases under conditions of minimal behavioral
response, and a lack of intervention measures, offering crucial understanding of
the epidemics behavior and trajectory.

In the results of Vaccine dynamics, studying these methods to curb virus spread
is a critical focus in the field of epidemiology. Among these, vaccination initia-
tives stand out as key societal measures for halting infectious disease proliferation.
Grasping how well these strategies work is essential to evaluate the accuracy and
reliability of the epidemiological model.

Graphs in Figure 9 help in understanding how increasing vaccination coverage
impacts both the magnitude of these health metrics and the timing of when these
maximum values occur. As vaccination coverage increases, there’s a clear trend of
decreasing max values for all metrics, indicating the effectiveness of vaccination
in controlling the disease. Additionally, the timing (day of occurrence) for maxi-
mum deaths shifts significantly with higher vaccination coverage, highlighting the
changing dynamics of the disease spread and mortality as more of the population
becomes vaccinated. The impact of increasing vaccination coverage on the spread
of an infectious disease, showing a clear decline in the maximum values of preva-
lence, new daily cases, and deaths as coverage expands from 10% to 90%. At the
lowest coverage, prevalence peaks at 1821 cases by day 21, with new daily cases
and deaths reaching their maxima shortly before and much later, respectively. As
vaccination coverage grows, not only do these numbers decrease significantly, but
the peak days for new cases tend to occur earlier, while for deaths, they shift
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Fig. 9: ”Max Value” reached by each metric (Prevalence, New Daily Cases, Deaths)
across different vaccination coverage levels (left), and ”Day of Occurrence” for the
maximum values of each metric, again across varying levels of vaccination coverage
(right).

variably. By the time coverage reaches 90%, the maximum prevalence plummets
to 151, new daily cases drop to 26, and deaths reduce to 21, demonstrating the
efficacy of vaccinations in controlling the outbreak.

Fig. 10: Relationship between increasing vaccination coverage and its impact on
disease metrics within a population of 30,000 individuals.

Plot in Figure 10 shows the ”Max Value (%)” for each metric (Prevalence, New
Daily Cases, Deaths) across different caution parameters. The x-axis represents
the caution parameters on a logarithmic scale to better visualize the wide range of
values, while the y-axis shows the maximum value as a percentage of the highest
value observed within each metric category. This visualization helps in comparing
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the relative changes in prevalence, new daily cases, and deaths as the caution
parameter increases.

Fig. 11: Relationship between increasing vaccination coverage and its impact on
disease metrics within a population of 30,000 individuals.

In Figure 11 a plot concerning the impact of different percentage of the popu-
lation that has been vaccinated on disease metrics is reported. The data points are
spread across five key vaccination coverage milestones: 10%, 30%, 50%, 70%, and
90%. In particular, the maximum number of individuals affected by the disease
(Y-axis) plotted for each of the vaccination coverage percentages (X-axis) is repre-
sented. It is the count of individuals who are either currently infected (Prevalence),
newly infected (New Daily Cases), or have died due to the disease (Deaths) on the
day when the maximum value was observed. Prevalence (Blue Line): This line
indicates the maximum number of active disease cases at any given point within
the population, on the days when the peak prevalence was observed. It shows a
clear declining trend, indicating that as vaccination coverage increases, the preva-
lence of the disease decreases. New Daily Cases (Orange Line): This line tracks the
maximum number of new infections reported daily. Similar to prevalence, there is
a notable decrease in new daily cases as the vaccination coverage grows. Deaths
(Green Line): This line reflects the peak number of deaths recorded in a single day.
It also shows a downward trend, which suggests that higher vaccination rates are
associated with lower mortality on the day when the maximum deaths occurred.
In the context of the case study, the introduction of a ”Caution Parameter” en-
hances the model of disease spread by accounting for human behavior in response
to infection rates. This parameter operates through a mathematical formula where
Ψ(f) signifies the adjusted probability of infection based on the current fraction of
infected individuals, f, relative to a threshold fraction, f*. The threshold fraction,
f*, represents a critical level of infection that triggers a heightened level of cau-
tion among the population, effectively reducing the infection probability by half.
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Essentially, this mechanism transitions a simplistic probabilistic model into a nu-
anced stochastic one, where the infection dynamics are modulated not just by the
raw infection rates but also by the population’s adaptive response to the spread of
the infection. This adaptive response, governed by the value of f*, implies that a
smaller fraction of infected individuals could lead to a significant behavioral shift
towards reducing infection risks, thus influencing the overall spread of the disease
in a realistic and complex manner.

5 Discussion

Produced data presents the results of a study exploring the impact of varying levels
of public caution and vaccine coverage on three key epidemiological metrics: preva-
lence, new daily cases, and deaths, within a population with no vaccine coverage.
The ”Caution Parameter” represents a numerical value assigned to the popula-
tion’s level of caution or preventive measures taken to avoid infection. A higher
value signifies greater caution and, presumably, more robust preventive behaviors.

As a consequence, at the lowest level of caution (0.02), the impact on disease
spread and outcomes is minimal, with relatively high percentages in prevalence
(37.64%), new daily cases (35.86%), and particularly high in deaths (90.16%).
This suggests that without significant behavioral changes or interventions, the
population experiences substantial impacts from the disease.

Increasing the Caution Parameter to 0.2 shows a dramatic increase in all met-
rics, indicating that even moderate increases in public caution can have a sig-
nificant effect on disease outcomes. Prevalence and new daily cases rise sharply,
indicating a widespread outbreak, but deaths increase at a slower rate (77.78%),
suggesting that increased caution might somewhat mitigate the severity of out-
comes. At a Caution Parameter of 1, there is a notable shift; while prevalence and
deaths increase, with prevalence nearly reaching the entire population and deaths
at 93.02%, new daily cases hit 100%. This point might represent a critical thresh-
old where the population caution has a maximized effect on slowing the spread,
albeit with a significant portion of the population already affected.

The most extreme caution level analyzed, 10, results in the maximum values for
prevalence and deaths, both reaching 100%, while new daily cases slightly decrease
to 96.26%. This could indicate a scenario where extreme caution is enacted too
late, after the disease has already spread extensively, or it could reflect a situation
where extreme caution leads to effective control of new cases, but the overall
impact of the disease remains high due to previous spread, and in-between public
behavior (as quantified by the Caution Parameter) and disease dynamics in the
absence of vaccination. It suggests that while increased caution can significantly
affect disease spread and mortality, there is a nuanced balance between the timing
and intensity of these behavioral changes and their ultimate impact on disease
outcomes. These findings highlight the importance of timely and proportionate
public health responses in managing infectious disease outbreaks.
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6 Conclusion and future work

This study advances an evidence in the literature about the potential of Membrane
Systems in epidemiological modeling, by establishing an integrated framework that
aptly represents disease transmission dynamics and intervention effectiveness, con-
sidering behavioral influences. The simulation results underscore the necessity of a
holistic approach to disease control, which is essential for crafting effective public
health strategies in response to infectious disease threats.

A future work could consider the model extension to other infectious diseases
and in genereal global scenarios. Indeed, the current model has been extensively
applied to the context of COVID-19. A valuable extension would be to adapt and
apply this model to other infectious diseases, such as influenza, Ebola, or even an-
timicrobial resistance, which present different transmission dynamics and societal
impacts. Additionally, incorporating geographical variations and cultural differ-
ences in human behavior across different global regions could provide insights into
disease spread and control measures in a more diversified manner. This expansion
would involve adjusting the model parameters to suit different disease character-
istics and transmission modes, as well as integrating diverse behavioral responses
based on cultural norms. Beside, by utilizing real-time data, such as infection rates,
vaccination rates, and public mobility patterns from various sources like health de-
partments and mobile devices, the model could dynamically update and predict
disease spread scenarios more accurately.
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