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Summary. Spiking neural P systems, SN P systems in short, are membrane systems based on
the third generation of neuron models (spiking neurons). Recent results in neuroscience highlight
the importance of extrasynaptic activities of neurons, that is, features and functioning of neurons
apart from their synapses. Previously it was thought that signals such as neuropeptides only assist
neurons but such signals are given further importance more recently. Inspired by such recent results,
we introduce the idea of wireless SN P systems, or WSN P systems in short. In WSN P systems no
synapses exist, and we associate regular expressions for each neuron to decide which spikes it
receives. We provide two semantics of how to “interpret” the spikes released by neurons. A specific
register machine is simulated to show how different the programming style is with WSN P systems
compared to SN P systems and other variants. The programming style emphasises a trade-off: WSN
P systems can be more “flexible” in the sense that neurons are not limited by their synapses as before
for sending spikes; the loss of the useful and directed graph, however, requires careful design of the
rules and the regular expression associated with each neuron. For instance, in the present work we
make use of prime numbers to create the expressions and rules of the neurons.

Keywords: Membrane computing, spiking neural P systems, extrasynaptic signalling,
neuropeptides



66 D. Orellana-Martı́n et al.

1 Introduction

The present work introduces a variant of spiking neural P systems, in short SN P sys-
tems. SN P systems introduced in [1] are inspired by spiking neurons and their network:
the processors are neurons which are the nodes in a directed graph; the edges are called
synapses, which allow the communication between neurons of a single object a referred
to as a spike; the neurons are spike processors which consume and produce spikes.

Some recent survey papers of SN P systems and variants include [2, 3] and more re-
cently in [4]. Since their introduction, it is known that SN P systems are Turing complete.
SN P systems can also solve NP-complete problems, trading time for space [5]. In the past
decade or so many variants of SN P systems have been introduced depending on specific
ingredients or features, mostly from biology. For instance the introduction of autapses [6],
synaptic plasticity [7], synaptic schedules [8], neurogenesis [9].

Besides theoretical works, simulators of SN P systems and variants are used to support
research or pedagogy, such as interactive and visual software in [10, 11] with the main
page in [12], and recent tutorial in [13]. Solutions to hard problems are also implemented
in parallel hardware such as in [14] which implements ideas from [15], with recent and
some state-of-the-art results in [16].

In the present work we introduce the idea of wireless SN P systems, or WSN P sys-
tems in short. One general reference for the bio-inspiration of WSN P systems is from
[17] with recent and detailed results from [18] and [19]. Briefly, such recent results em-
phasise the crucial and important role of neuronal activities outside of their synapses,
hence their wireless features and functions. Such recent works focus their attention on a
specific animal known as C. elegans.

The worm C. elegans is a model organism, that is, much is known about its biol-
ogy including its nervous system due to its “simplicity” of several hundred neurons only.
Despite the small size of this worm, its nervous system has interesting biochemical com-
plexity with structural features shared by larger animals [19]. Due to better techniques
and technology, more recently there are improved works to show how a wireless net-
work (that is, without synaptic wiring) among nerve cells or neurons is able to operate
[18, 19]. These recent works challenge the idea neurons communicate only or mainly
through anatomical connections, that is, through their synapses [17]. Such recent works
reveal new details of a connectome or wiring diagram among neurons, the neuropeptider-
gic connectome: a connectome which is equally important and perhaps more diverse than
the synaptic connectome.

Furthermore, these recent works identify neuropeptides, the chemical messages re-
leased by neurons, as the basis for such wireless network among neurons. Neurons in the
C. elegans worms can release neuropeptides, or have receptors for such neuropeptides.
The wireless network formed from these pairs of releasing and receiving neurons is dense
and decentralised, compared to the less dense and more centralised network of synapses
[19]. Such pairs are responsible for existence of the wireless network, which means that
neuropeptides are not simply random chemicals floating between neurons. Neuropeptides
affect the neural system over larger scales of time and space, unlike synaptic signals re-
stricted only to both sides of the synapse [19]
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Previously it was thought that neuropeptides only assisted in synaptic communica-
tion. However, these recent works indicate the ubiquitous, important, and direct role to
neuron activation of neuropeptides and the corresponding wireless network [17]. Neu-
ropeptides are conserved and ancient chemicals in brains of many organisms, including
humans brains, suggesting the pioneering work with C. elegans can at least reveal useful
structures or principles for brain function [18, 19]. For instance, a recent technique allows
to detect neuropeptides, which can assist in better understanding of both wired and wirless
networks of neurons including those for humans [20].

We use the recent results mentioned as inspirations for extrasynaptic functions of
neurons, that is, functioning without or outside the usual synapses. The contribution of
the present work is the introduction of wireless SN P systems. No synapses are present in
the neurons, while still using rules to consume and produce spikes. For each neuron we
associate a regular expression to decide what “forms” of spikes the neuron can receive.
We introduce two semantics for WSN P systems, based on the interpretation of the spikes
released at each step by the neurons: the spike package semantic considers the spikes as
individual packages as released by each neuron; the spike total semantic considers the sum
of spikes released by all neurons. We show how to programme a specific WSN P system
through the simulation of a specific register machine. Such a simulation emphasises the
rather different way to programme WSN P systems compared SN P systems and variants,
due to the associated expression for each neuron and the lack of synapses. In this way we
note that the directed graph structure of SN P systems and variants is a very useful feature.
Some “flexibility” is gained in the sense that the neurons are not limited to sending spikes
only to neurons where their synapses connect. However, losing the directed graph makes
the programming of the system more “involved” in the sense that more effort can be
required to design the rules of each neuron.

The present work is organised as follows: in the next Section 2 we provide in an
intuitive way an example of a WSN P system Π1. We examine the computations of Π1

under two semantics, the spike package and spike total semantics. In Section 3 we show
how a WSN P system can simulate a small and specific register machine to highlight the
rather different way to programme such systems. Lastly, in Section 4 we provide some
conclusions and directions for further work.

2 An example with two semantics

In this section we consider an example, the system Π1 shown in Figure 1. We use Π1

to elaborate two semantics about wireless SN P systems. Briefly, Π1 has 3 neurons, each
labelled with a pair (i, Ei) for 1 ≤ i ≤ 3. Each neuron has an associated regular expres-
sion to check what number of spikes it can receive. For instance, neurons σ1 and σ2 have
E1 = E2 = a which means they only receive spikes of the form a1 = a fired from other
neurons, including from σ1 itself. We note that the rule set of σ2 is empty, so later we see
the number of spikes inside it either remain the same or increase.

We omit the definition, syntax, and semantics standard to SN P systems. The reader is
referred instead for instance to the seminal paper [1], in open access tutorials or surveys
as in [21, 2], or the dedicated chapter of the handbook in [22].
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a

r1 : a2/a → a2

r2 : a → a
(1, E1 = a)

a

(2, E2 = a)
a2

r3 : a2 → a
r4 : a2 → a2

(3, E3 = a2)

Fig. 1: Π1 is an example of a wireless SN P system.

2.1 Semantic 1: spike package

The semantic 1 we first consider, which we refer to as spike package semantic, considers
only in spikes arriving in “packages” sent by neurons in the environment. Consider two
neurons which fire at the same step t: let neuron σi and σj have regular expressions
Ei = am and Ej = an associated, respectively, for n,m ≥ 1; neuron σi and σj fire an

and am spikes at step t, respectively. At the next step t + 1, neuron σi receives the am

spikes from neuron σj , and vice-versa. That is, while at step t there is a total of n + m
spikes in the environment due to the firing of both neurons: in spike package semantic we
only consider packages or groups of the spikes and not the total spikes in the environment.
We consider the spike total semantic as semantic 2 in Section 2.2 later.

Let us now apply the spike package semantic to the system Π1 in Figure 1. To help
with clarifying the computation of Π1 we refer to the configuration tree in Figure 2 under
spike package semantic.

The initial configuration of Π1, according to the total ordering of 1, 2, and 3 of the
neurons, is C0 = ⟨1, 1, 2⟩. That is neurons 1, 2, and 3 each have 1, 1, and 2 spikes,
respectively. Due to C0 and the nondeterminism in Π1 found only in neuron σ3, there is
a choice between applying rule r2, and either r3 or r4.

If rule r2 is applied one spike is consumed in neuron σ1, and sent to both σ1 and
neuron σ2 due to their associated regular expressions E1 = E2 = a. Applying r3 means
σ3 consumes two spikes but produces only one spike. Again the single spike from σ3

arrives at σ1 and σ2 due to their regular expressions. Hence, we have the transition C0
r2r3=⇒

C1,0 = ⟨2, 3, 0⟩, that is, by applying r2 and r3 we obtain configuration C1,0 from C0.
Consider now if we apply r2 and r4 instead. The effect applying of r2 is still to return

a spike to σ1 and to increase the spikes in σ2. The effect of r4 is reflexive, that is, in neuron
σ3 two spikes are consumed and then returned to itself since E3 = a2. Hence, we have the
transition C0

r2r4=⇒ C1,1 = ⟨1, 2, 2⟩, that is, by applying r2 and r4 we obtain configuration
C1,1 from C0.

As seen in the configuration tree in Figure 2, each branch of computation of Π1 is
nonhalting, that is, Π1 always arrives at a configuration where some rule is applied. The
number of spikes in neuron σ2 continue to increase. More precisely, we have transition
⟨2, b, 0⟩ r1=⇒ ⟨1, b, 2⟩, transition ⟨1, b, 2⟩ r2r3=⇒ ⟨2, b + 2, 0⟩, or transition ⟨1, b, 2⟩ r2r3=⇒
⟨1, b+ 1, 2⟩ for some b ≥ 1.
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⟨1, 1, 2⟩

⟨2, 3, 0⟩ ⟨1, 2, 2⟩

⟨1,3,2⟩ ⟨2, 4, 0⟩ ⟨1,3,2⟩

⟨2,5,0⟩ ⟨1,4,2⟩ ⟨1,4,2⟩

⟨1,5,2⟩ ⟨2, 6, 0⟩ ⟨1,5,2⟩

...
...

...

r2 r3

r2 r4

r1
r2r3

r2r4

r2r3
r2r4 r1

r1 r2r3
r2r4

r2r3 r2r4 r1

Fig. 2: A tree of configurations of Π1 in Figure 1 using semantic 1 (spike package seman-
tic). The initial configuration is ⟨1, 1, 2⟩. Except for ⟨1, 1, 2⟩, each node in the tree is a
next configuration by applying the rules labelling the connecting edge. Nodes or configu-
rations in bold are nodes repeated elsewhere in the portion of the tree shown.

2.2 Semantic 2: spike total

We continue the same notation at the start of Section 2.1 to consider the total spike seman-
tic. Recall we have neurons with labels and their associated expressions as σi = (i, Ei =
am) and σj = (j, Ej = an) for n,m ≥ 1. At step t neurons σi and σj fire n and m
spikes, respectively. Thus we have a total of n+m spikes in the environment. In the next
step t+ 1, no neuron receives any spikes since an+m /∈ L(Ei) and an+m /∈ L(Ej). That
is, none of the regular expressions of both neurons describe the total number of spikes in
the environment.

Consider now the same SN P system Π1 from Figure 1 but under the total spikes
semantic. The configuration tree of Π1 is now given by Figure 3. From the same initial
configuration C0 = ⟨1, 1, 2⟩ the computation proceeds in a different way. The transition
C0

r2r4=⇒ C1,1 = ⟨0, 1, 0⟩ is a halting configuration, that is, no more rules can be applied in
Π1. Only the subtree with transition C0

r2r3=⇒ C1,0 = ⟨0, 1, 2⟩ continues to infinitely grow
the number of spikes in neuron σ2. Actually after configuration C2,0 = ⟨1, 2, 0⟩ only rule
r2 can be applied in a nonhalting computation.

We note that the effect of applying rules r2 and r4 from C0 is to release a total of a3

spikes in the environment followed by the halting of Π1. Since we use the total spikes



70 D. Orellana-Martı́n et al.

semantic no neuron receives these spikes in the next step because no neuron has an ex-
pression which includes a3.

⟨1, 1, 2⟩

⟨0,1,2⟩ ⟨0, 1, 0⟩ (HALT)

⟨1, 2, 0⟩ ⟨0,1,2⟩

⟨1, 3, 0⟩

⟨1, 4, 0⟩

...

r2 r3

r2 r4

r3

r4

r2

r2

r2

Fig. 3: Configuration tree for Π1 in Figure 1 using semantic 2 (total spikes semantic). As
in Figure 2, edges between nodes (configurations) are labelled by the rules applied from
the source to destination nodes. Also, configurations in bold means they are repeated
elsewhere in the tree.

3 Programming WSN P systems

Let us consider a small programme with some register machine M to give us an idea how
to programme a WSN P system, including their similarities and differences with SN P
systems and their other variants. It is known that register machines compute the set of all
Turing computable sets of numbers [23]. We do not go into the details of register machines
here, and refer the reader instead to [23] as well as to [1, 22] for the usual style of proofs
with register machines. Consider the following instructions of a register machine M :

l1 : (SUB(r1), l2, l3),
l2 : (ADD(r1), l1, l3),
l3 : HALT.

We simulate the instructions of M using a WSN P system ΠM with the following details.
We map prime numbers to elements of M and use the mapping as addresses in ΠM . The
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idea of addresses and simulation is made clear in a moment. In general, for elements of
any register machine we use the total order l1, l2, . . . , r1, r2, . . .. Specific to M we have
the following mapping of its elements to prime numbers:

pl1 = 7, pl2 = 11, pl3 = 13, pr1 = 17.

That is, starting from instruction l1 of M we map it to the prime number pl1 = 7,
followed by mapping l2 and l3 to pl2 = 11 and pl3 = 13, respectively. After mapping
prime numbers to all instructions of M , we map the next prime numbers to registers:
there is only one register in M mapped to pr1 = 17.

In general, the mapping we use for the content of register ri = n is having a2pri
n

spikes in the neuron σri . Following the mapping of prime numbers above to elements of
M : if r1 = n the associated neuron σr1 has a2pr1n = a2(17)n spikes.

3.1 Simulating a SUB instruction

Now we provide the SUB module of ΠM to simulate instruction l1 of M . The SUB
module consists of the following neurons and their contents. We note that the contents of
a neuron σi = (an, Ri, Ei) consists of its initial number of n spikes, its rule set Ri, and
the associated regular expression Ei.

σl1 = (a7, Rl1 , El1 = a7),

σaux1,1
= (λ,Raux1,1

, Eaux1,1
= a2(17)(a17)

+
),

σr1 = (a2(17)n, Rr1 , Er1 = a17 ∪ a2(17)).
The rule sets of each neuron we list as follows.

Rl1 = {a7 → a7(17)},
Raux1,1

= {a7(17)/a7(17−1) → a17, a7+3(17) → a11, a7+5(17) → a13},
Rr1 = {(a2(17))+a17/a3(17) → a3(17), a17 → a5(17)}.

The rules in each rule set are written in an explicit way with their superscripts, to make it
easier to see the idea of the simulation. For instance, in simulating instruction l1, neuron
σl1 has only one rule releasing apl1

(pr1
) = a7(17) spikes to mean the following: the source

of spikes is σl1 with σr1 as destination. To simulate the next instruction, neuron σaux1,1

releasing either pl2 = 11 or pl3 = 13 spikes means the destination neuron is either σl2 or
σl3 , respectively.

Now we simulate instruction l1 of M by the SUB module of ΠM as follows. Consider
a total order of neurons in the SUB module of ΠM as σl1 , σaux1,1 , σr1 . From the above
description, the initial configuration at time step t = 0 of the total order is given by
C0 = ⟨7, 0, 2(17)n⟩.

At step t = 1, the a7 spikes in neuron σl1 start the computation by applying the single
rule in the neuron: all pl1 = 7 spikes are consumed and 7(17) = pl1(pr1) spikes are
produced. The reason for 7(17) spikes is to indicate that instruction l1 sends its spikes
to perform subtraction operation on register r1. At step 1 have the configuration C1 =
⟨0, 7(17), 2(17)n⟩. When the spikes have been sent, only the auxiliary neuron σaux1,1

receives the spikes from σl1 since only the regular expression associated with σaux1,1

makes a match. That is, we have a7(17) ∈ L(Eaux1,1).
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At step t = 2, only the rule a7(17)/a7(17−1) → a17 of σaux1,1
is applied: it consumes

7(17 − 1) spikes and produces 17 spikes is received only by neuron σr1 . At step 2 we
have the configuration C2 = ⟨0, 7, 2(17)n+ 17⟩.

At step t = 3 only neuron σr1 can apply a rule. Depending on the value of n in register
r1 of M , we have the following two cases:

1. if n > 0, this means that before t = 2, neuron σr1 has 2(pr1)n = 2(17)n ≥ 34
spikes. Let n = 1. Then, receiving 17 spikes means the total spikes in σr1 at step
t = 2 is 17 + 34n = 51 spikes.
The first rule of σr1 is applied since a51 ∈ L((a2(17))+a17). Applying the rule con-
sumes 3(17) spikes, no spikes remain in σr1 since 51 − 3(17) = 0. In this way, as
the number in register r1 is reduced from n to n − 1, the number of spikes in σr1 is
reduced from a2(17)n to a2(17)(n−1). The rule also produces a3(17) spikes which in
step t = 4 only σr1,1 receives.
At the moment t = 4 the configuration is C4 = ⟨0, 7+3(17), 2(17)(n−1)⟩ and only
σr1,1 can apply a rule: the neuron applies the rule a7+3(17) → a11 to consume all of
its spikes and to activate the next module to simulate instruction l2 associated with
pl2 = 11.

2. if n = 0, before step t = 2 neuron σr1 has no spikes. Receiving 17 spikes means
the total spikes in σr1 at moment t = 3 is 17 spikes: the neuron applies its rule
a17 → a5(17) to consume all spikes and send spikes only to σr1,1 . In this way, as the
number in register r1 is 0, the number of spikes in σr1 remains 0 also.
At the moment t = 4 the configuration is now C4 = ⟨0, 7+5(17), 0⟩, with only σr1,1

applying a rule: the rule a7+5(17) → a13 is applied, consuming all spikes. At the next
step the simulation of instruction l3 associated with pl3 = 13 begins.

Thus, the subtraction instruction l1 of M is correctly simulated: if register r1 contains
a nonzero value it is decremented and the next instruction is l2, otherwise r1 remains zero
and l3 is the next instruction. We note that there is no interference in the case when there is
more than one subtraction instruction associated with r1. The mapping of prime numbers
over a total ordering on M described above, and the “addresses” of each neuron based on
the mapping allows no wrong simulation. Such addresses we use not only in the regular
expressions associated with each neuron, but also in the spikes released by each neuron.

3.2 Simulating an ADD instruction

This section is devoted to the ADD module of ΠM to simulate instruction l2 of M pro-
vided at the start of Section 3. The ADD module consists of the following neurons and
their contents. For simulating this, we must include new rules in Raux1,1

σl2 = (λ,Rl2 , El2 = a11),
The rule sets of each neuron we list as follows.

Rl2 = {a11 → a11(17)},
Raux1,1

= Raux1,1
∪ {a11(17)/a11(17−1) → a2(17), a11 → a7, a11 → a13}

Let us suppose that, at step t = k, a11 spikes arrive to neuron σl2 . Then, the simulation of
the instruction l2 starts. Consider a total order of neurons in the ADD module of ΠM as
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σl2 , σaux1,1
, σr1 . From the above description, the configuration at the time t = k neuron

σl2 receives a11 spikes of the total order is given by Ck = ⟨11, 0, 2(17)n⟩.
At step t = k + 1 the a11 spikes in neuron σl2 start the simulation by applying the

single rule in the neuron: all pl2 = 11 spikes are consumed and 11(17) = pl1(pr1)
spikes are produced. Similar to the SUB instruction, the reason for 11(17) spikes is to
indicate that instruction l2 sends its spikes to perform addition to register r1. When the
spikes have been sent, only the auxiliary neuron σaux1,1

receives the spikes from σl1

since only the regular expression associated with σaux1,1
makes a match. That is, we have

a11(17) ∈ L(Eaux1,1).
At step t = k + 2, only the rule a11 → a11(17) of σaux1,1 is applied: it consumes

11(17 − 1) spikes and produces 2(17) spikes. Only neuron σr1 will receive the spikes.
Thus, Ck+2 = ⟨0, 11, 2(17)(n+ 1)⟩.

At step t = k+ 3, both rules a11 → a7 and a11 → a13 are applicable, so one of them
is selected in a non-deterministic way. If the first one is applied, a7 spikes are be fired,
matching with the regular expression of neuron σl1 . Otherwise, rule a13 spikes are sent to
neuron σl3 mapped to pl3 = 13. In the first case, the SUB instruction is simulated again,
while in the second case the output must be produced followed by the halting of ΠM .

Thus, the addition instruction l2 of M is correctly simulated: the value of register
r1 is augmented by 1 and the next instruction is selected from the set {l1, l3} in a non-
deterministic way. No interference with rules from the SUB instruction is found. The
regular expressions always match with the prime number pl2 corresponding with instruc-
tion l2. That is, pl2 spikes are never released while simulating the SUB instruction.

Before we end the present section on programming ΠM to simulate M we make a
few more notes. First we omit the explicit simulation of instruction l3 to halt M . In ΠM ,
simulating a halt instruction requires the release of the output to the environment. In the
above description of ΠM we assume the use of spike package semantic as in Section 2.1.
It seems to be the case that ΠM as described above can still simulate M under the spike
total semantic in Section 2.2.

4 Final remarks

We introduced yet another variant of SN P systems we refer to as wireless SN P systems,
or WSN P systems in short. Several kinds of novelty can be found in WSN P systems. The
further movement away from a fixed or static graph motivated especially by recent and
exciting discoveries in neuroscience. That is, our increasing knowledge of extrasynaptic
signalling, of neuropeptides and their important influence in neuronal activities. WSN
P systems go against the traditional directed graph used in neural systems or networks,
introducing two semantics how the “floating” spikes are received. We associate regular
expressions to each neuron allowing neurons to distinguish which spikes to accept or
reject. Both semantics, the spike partial and spike total, are bio-inspired. The semantics
also bear some resemblance to packets of data among networks of computers that connect
for instance wireless networks and the Internet.

The use of forgetting rules of the form as → λ, are common to SN P systems and
many variants. Forgetting rules are used to remove spikes without producing spikes, but
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such rules may not be necessary in WSN P systems. A way to avoid such rules is to use a
rule as → ax where x is not found in any regular expression of any neuron. In this way
we still remove the s number of spikes, but more care needs to be given using the spike
total semantic (Section 2.2). The output neuron mentioned at the end of Section 3.2 needs
to be a distinguished neuron, in order to obtain the output of the system.

In many variants of SN P systems the delay feature is common: there can be a nonzero
delay from releasing a spike and the spike arriving to another neuron. It is known, see e.g.
[24], that the delay feature is not required for universality, but can be useful for instance
in modelling [25]. It is interesting to see the role of delays in WSN P systems. Other
common features of SN P systems and variants include the lack of reflexive synapses, and
restricting the produced spikes of a neuron to be at most the consume spikes. A variant
known as SN P systems with autapses allows reflexive synapses although this variant has
a static and directed graph [6]. For restricting the produced spikes to be less or equal to the
consumed spikes, perhaps this can be achieved by using more time in the computation,
and more neurons to generate the required spikes.

Regarding the semantics in Section 2, it is interesting to see which types of problems
or computations one semantics has an advantage over the other. As seen in the configura-
tion trees in Figure 2 and Figure 3, for the same Π1 the computations are rather different.
Another interesting extension or semantic for WSN P systems is the idea of decay or “at-
tenuation” of spikes: it is assumed that spikes (especially if delays are introduced) can
“float” without change for an arbitrary duration in time or distance in space between neu-
rons. It is interesting to introduce such decay or attenuation in WSN P systems, similar
to decay of electromagnetic signals used in wireless networks of computers. Previously,
decaying spikes were considered in SN P systems [26].

In programming ΠM we notice its operation is sequential, that is, at each step at most
one neuron applies a rule. The sequential restriction or normal form has been applied to
SN P systems as early as in [27], and more recently with variants having dynamic topolo-
gies in [28, 29]. It is interesting what kinds of restrictions and computations can(not) be
obtained when more parallelism is involved in the system in terms of neurons, rules, etc.

Another interesting direction is to consider matrix representations of WSN P systems,
as done with SN P systems in [30] and more recently in [31, 11]. Such representations al-
low for faster simulations, such as parallel processors [16, 32] web browsers [10, 11, 33],
and their automatic design [34, 35]. The related variant with matrix representation seems
to be SNPSP systems in [36]. SNPSP systems introduce plasticity to allow adding or
removing of synapses, introduced in [7]. Another variant known as SNP systems with
scheduled synapses (in short, SSNP systems) has synapse dynamism, by assigning sched-
ules or (range of) time steps when synapses exist or not. Besides SNPSP systems and
SSNP systems, another related variant are extended SN P systems in [37] which also have
no fixed and directed graph structure. It is also interesting to consider WSN P systems in
the formal framework of [38] for membrane systems and related models.

A few other lines of investigation on computing power to consider are the following.
Computing languages with WSN P systems, for instance in [39, 40]. Providing “small”
WSN P systems as in [41, 42]. Normal forms such as restricting the types of regular
expressions, with optimal results in [24]. In the case of WSN P systems not only are there
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expressions in rules but also those associated with the neurons. Creating homogeneous
systems as in [43, 44] is also worth investigating: the expressions associated for some
neurons must be distinct but not for others; also the number of produced spikes may need
to be heterogeneous for some rules, unlike previous works on homogeneous SN P systems
where each neuron has the same rule set.

Besides computing power, computing efficiency is interesting to consider with WSN P
systems. For instance how to solve NP-complete problems in a (non-)uniform way [45, 5].
An interesting extension is the feature to allow creation of new neurons as in [9, 46]
or using the idea of pre-computed resources [47]. Real world applications can perhaps
benefit from WSN P systems with neurons having the ability to “distinguish signals”
using their associated expressions. Applications may include improvements on intrusion
detection [48] and skeletonizing images [49]. More directions and open problems can be
derived from [2, 4].

We end the present work by highlighting, based on the ideas here presented, that
the directed graph structure of an SN P system seem to be powerful, at least useful, in
programming the system. Losing such directed graph as shown in WSN P systems we
need to use regular expressions for each neuron. Besides, here we use a mapping of prime
numbers for simulating a register machine: a rather unconventional way of simulation
at least in terms of the usual way of simulating register machines with such membrane
systems. These ideas show that the programming of WSN P systems are quite different
and interesting compared to SN P systems and their many variants.
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H.N.: Simulation of spiking neural p systems with sparse matrix-vector operations. Processes
9(4) (2021)

16. Hernández-Tello, J., Martı́nez-Del-Amor, M.Á., Orellana-Martı́n, D., Cabarle, F.G.C.: Sparse
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28. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J.: Sequential spiking neural p systems with
structural plasticity based on max/min spike number. Neural computing and applications 27
(2016) 1337–1347

29. Bibi, A., Xu, F., Adorna, H.N., Cabarle, F.G.C., et al.: Sequential spiking neural p systems with
local scheduled synapses without delay. Complexity 2019 (2019)

30. Zeng, X., Adorna, H., Martı́nez-del Amor, M.Á., Pan, L., Pérez-Jiménez, M.J.: Matrix repre-
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41. Păun, A., Păun, G.: Small universal spiking neural p systems. BioSystems 90(1) (2007) 48–60
42. Cabarle, F.G.C., de la Cruz, R.T.A., Adorna, H.N., Dimaano, M.D., Peña, F.T., Zeng, X.: Small

spiking neural p systems with structural plasticity. Enjoying Natural Computing: Essays Dedi-
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