
Virus Machines And Their Matrix
Representations

Antonio Ramı́rez-de-Arellano1,2, Francis George C. Cabarle1,2,3, David
Orellana-Mart́ın1,2, Henry N. Adorna3, Mario J. Pérez-Jiménez1,2

1Research Group on Natural Computing, Department of Computer Science and
Artificial Intelligence, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
2SCORE lab, I3US, Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: aramirezdearellano@us.es, dorellana@us.es, fcabarle@us.es,

marper@us.es
3Department of Computer Science, University of the Philippines Diliman,
1101 Quezon City, Philippines
E-mail: fccabarle@up.edu.ph, hnadorna@up.edu.ph

Summary. In this work, we present an extension of the matrix representation for virus
machines. Structures such as vectors and matrices are useful in practical and theoretical
domains. Given the matrix representation of virus machines, the computations of such
machines can be expressed in terms of linear algebra operations. Previously, the matrix
representation was for deterministic machines only. Presently, we provide a virus machine
to nondeterministically generate the set of all natural numbers. We use the virus machine
for generating natural numbers to demonstrate the extension of the matrix representation.
Finally, we give some conclusions and directions for further work.

Keywords: Virus machine, Matrix representation, Natural computing.

1 Introduction

Virus machines (in short, VMs) are unconventional and bio-inspired models of
computing introduced in [1], inspired by the transmission of viruses in a network
of hosts. Since their introduction, VMs have been shown to be Turing complete,
that is, they can generate, accept, or compute functions over computable sets of
numbers [1, 2]. Arithmetic and pairing functions, as well as simulations of workflow
patterns have been investigated in the context of VMs [3, 4, 5].

Briefly, a VM is a heterogeneous graph consisting of 3 subgraphs: host graph,
containing hosts as nodes, with directed and weighted edges among hosts as chan-
nels, where hosts contain zero or more copies of the virus object v; instruc-
tion graph, where nodes are instructions to be activated, with directed and



80 A. Ramı́rez-de-Arellano et al.

weighted edges between nodes identify which instruction to next activate; channel-
instruction graph, which connects one instruction node to at most one channel
between hosts. By default all channels between hosts are closed: if an instruction
i node is activated and i connects to a channel, the channel is opened and viruses
are transferred from the source to the destination host.

Previously in [6] a matrix representation for VMs was introduced with the
following idea, at some time instant t: the configuration, that is, the number of virus
objects in each host is represented by a vector; an instruction vector represents
the instruction activated at t; a virus transmission matrix of the VM dictates
the effect of each instruction (written as rows) to each host (written as columns).
Computations of the VM, that is, transitions from one configuration to the next,
are provided by linear algebra operations of such a representation.

Other bio-inspired models with matrix representations are spiking neural P
systems (SN P systems, in short) [7, 8], including other variants and optimisations
in [9, 10, 11, 12]. The matrix representations of SN P systems are used in their
automatic design, simulations, and verifications, see for instance [13, 11, 14, 15].

The present work extends the matrix representation of virus machines from
[6]. A new VM ΠNat for generating the set of natural numbers is presented. The
matrix representation from [6] applies to deterministic VMs only, while the present
work extends it to nondeterministic VMs. The VM ΠNat is used to demonstrate
the extension with the nondeterministic semantic.

The present work is organised as follows. Section 2 provides the basic defini-
tion, syntax, and semantics of VMs. A VM to perform addition, and a new and
nondeterministic VM ΠNat are included in Section 2. Section 3 defines the matrix
representation first for deterministic VMs, followed by the extensions of the rep-
resentation for nondeterministic VMs. Conclusions and ideas for further work are
provided in Section 4.

2 Virus Machines: Brief definition

In [1], Virus Machines were introduced as a universal model of computation, in the
sense that they can calculate every set computable by a Turing machine. While the
formal definition can be followed in the founding work, we remark on the syntax
here, while the semantics will be explained with an explicit example.

First, let us formally define the syntax of virus machines.

Definition 1. Let a virus machine Π of degree (p, q) with p, q ≥ 0 defined as:

Π = (Γ,H, I,DH , DH , GC , n1, . . . , np, i1, hout)

where:

• Γ = {v} is the singleton alphabet.



Virus Machines And Their Matrix Representations 81

• H = {h1, . . . , hp} is the ordered set of hosts, hout can be either in H or not
(for this work, we will suppose always hout /∈ H, I = {i1, . . . , iq} the ordered
set of instructions.

• DH = (H ∪ {hout}, EH , wH) is the weighted and directed (WD) host graph,
where the edges are called channels and wH : H ×H ∪ {hout} → N.

• DI = (I, EI , wI) is the WD instruction graph and wI : I × I → {1, 2}.
• GC = (EH ∪ I, EI) is a unweighted bipartite graph called channel-instruction

graph, where the partition associated is {EH ∪ I}.
• n1, . . . , np ∈ N are the initial number of viruses in each host h1, . . . , hp, respec-

tively.

Regarding the semantics, a configuration or an instantaneous description at
an instant t ≥ 0 is the tuple Ct = (a1,t, a2,t, . . . , ap,t, ut, a0,t) where for each j ∈
{1, . . . , p}, aj,t ∈ N represents the number of viruses in the host hj at instant t, and
ut ∈ I ∪ {#}. To clarify the notation, in this work it will be said as instantaneous
description and Ct will be noted as IDt, being ID0 = (n1, . . . , np, i1, 0) the initial
instantaneous description.

From an instantaneous description IDt, IDt+1 is obtained as follows. The
instruction that will be activated is ut if ut ∈ I, otherwise IDt is a halting con-
figuration. Let us suppose that ut ∈ I and that it is attached to the channel
(hj , hj′) ∈ EH with weight w ∈ N, then the channel is opened and two possibilities
holds:

• If aj,t > 0, then there is virus transmission, that is, one virus is consumed from
hj and is sent to the host hj′ replicated by w. The next activated instruction
will follow the highest weight path in the instruction graph. In case the highest
path is not unique, it is chosen nondeterministically. In case there is no possible
path, then ut+1 = #

• If aj,t = 0, then there is no virus transmission and the next instruction follows
the least weight path. For the other cases, it is analogous to the previous
assumption.

To clarify the behavior of these devices, we will show two specific examples.
The first one will be deterministic, and the other one will be nondeterministic.
These two examples will be reused for the following section. Before this, some
brief explanations of the function computing and number generating modes are
presented. For a more formal and detailed definition we refer to [4, 2].

2.1 Virus Machines computing functions: Addition function

A virus machine with input of degree (p, q, r) with p, q ≥ 1 and 1 ≤ r ≤ p is defined
as:

Π = (Γ,H,Hr, I,DH , DH , GC , n1, . . . , np, i1, hout),

where Π = (Γ,H, I,DH , DH , GC , n1, . . . , np, i1, hout) is a VM of degree (p, q),
and Hr ⊆ H is the ordered set of input hosts. For a given input (a1, . . . , ar) ∈ N,



82 A. Ramı́rez-de-Arellano et al.

the initial configuration of Π +(a1, . . . , ar) will be the addition to the input hosts
the values a1, . . . , ar respectively.

We say a partial function f : −Nr → N is computed by a VM with input
of degree (p, q, r) if for each input a⃗ ∈ N well defined in f , all the computations
of Π + a⃗ halt and returns f (⃗a), otherwise all the computations are non-halting
computations.

To clarify this, let Πadd be a VM [4] with input of degree (2, 3, 2) visually
represented in Figure 1. The hosts are drawn as squares, and instructions are
drawn as blue dots; the initial amount of viruses at each host is written inside
them. For simplicity, the weights of the arcs with weight 1 are omitted. Finally,
the instruction-channel graph is represented by red dotted lines.

a

h1

b

h2

i1 i2 i3

2 2

Fig. 1. The VM ΠAdd + (a, b).

A method to formally verify these devices is by looking for invariants that
highlight relevant loops of the device. For example, two invariants holds in this
machine:

φ(k) ≡Ck = (a− k, b, i1, k), for each 0 ≤ k ≤ a;

φ′(k) ≡Ck+a+1 = (0, b− k, i2, a+ k), for each 0 ≤ k ≤ b;

The first invariant φ shows that the a viruses are sent one by one from h1 to the
environment, in this whole process instruction i1 will be activated, as φ(a) is true,
the configuration Ca = (a− a, b, i1, a) is reached, due to the host h1 being empty,
the next instruction follows the least weight path, that is instruction i2. Leading
the configuration Ca+1 = (0, b, i2, a). At that instant, the second invariant φ′(k) is



Virus Machines And Their Matrix Representations 83

initialized, which represents the analogous computation, but with host h2 instead
of host h1. In particular, φ′(b) is true, then the following computation holds:

φ′(b) =Ca+b+1 = (0, b− b, i2, a+ b),

Ca+b+2 = (0, 0, i3, a+ b), as h2(0),

Ca+b+3 = (0, 0,#, a+ b).

Thus, after the a+ b+3 transition steps, the machine halts and returns a+ b,
which is the addition between (a, b).

2.2 Virus machines generating sets: Natural numbers set

VMs can be defined to generate sets of natural numbers; we say a number n ∈ N
is generated by a VM Π, if for a computation of Π the machine returns n. We say
that a subset A ⊆ N is generated by a virus machine Π if and only if for every
a ∈ A, the number a is generated by Π, and for any halting computation of Π,
the output belongs to the set A.

To clarify this, let Πnat be the VM of degree (2, 4) depicted in Figure 2 that
generates the set N \ {0}.

1

h1 h2
2

i1 i2 i3 i4

Fig. 2. The VM ΠNat.

To formally prove that the natural numbers set N is generated, let us see that
for each n ∈ N \ {0}, there exists a computation of Πnat that generates n. Let us
suppose that the number generated is n ∈ N \ {0}, then the invariant that holds
this machine is:

φ′′(k) ≡ C3k = (1, 0, i1, k), for each 0 ≤ k ≤ n− 1;

The invariant can be easily proved by induction. In particular φ(n) is true,
thus the following computation holds:



84 A. Ramı́rez-de-Arellano et al.

φ′′(n− 1) ≡C3(n−1) = (1, 0, i1, n− 1),

C3(n−1)+1 = (0, 2, i2, n− 1),

C3(n−1)+2 = (1, 1, i3, n− 1),

C3n = (1, 0, i4, n), nondeterministic decision,

C3n+1 = (1, 0,#, n),

Thus, after 3n+ 1 transition steps, the machine halts and returns n.
To demonstrate that each halting computation of Πnat is in N \ {0}, we only

have to prove that for any halting computation of Πnat, the output is greater than
zero. For this, let us highlight the fact that at the instant t = 3, only two possible
computations arise: C3 = (1, 0, i1, 1) or C3 = (1, 0, i4, 1). In both cases, one virus
has been sent to the environment, as it cannot decrease, the output will be greater
than zero. Thus, VM Πnat generates the set N \ {0}.

3 Matrix Representation

In this section the matrix representation is formally defined for deterministic virus
machines, after that, the first ideas on the matrix representation of the nondeter-
ministic virus machines are presented.

3.1 Determinism case

Regarding the semantics of a VM, for any step or instant t ≥ 0, the instantaneous
description ofΠ is IDt = (a1,t, a2,t, . . . , ap,t, ut, a0,t), where each ai,t is the number
of viruses in the host hi, the instruction ut is next activated, and the environment
contains a0,t viruses.

For the following definitions, consider a VM Π of degree (p, q), with the nota-
tion fixed above and in Definition 1, at any instant t of its computation. We note
that definitions and results in the present section for the deterministic case are
from [6].

Definition 2 ([6]). We define the configuration vector as the vector

−→c t = ⟨a1,t, a2,t, . . . , a0,t⟩,

and the instruction vector as the vector

−→
i t = ⟨r1,t, r2,t, . . . , rq,t⟩,

where rm,t = 1 if ut = im ∈ I, otherwise rm,t = 0, for 1 ≤ m ≤ p. That is, if
the activated instruction is ij ∈ I, then the component rj,t is the only non-zero

element of
−→
i t.

In particular, vector −→c 0 = ⟨n1, n2, . . . , np 0⟩, and −→
i 0 = ⟨1, 0, . . . , 0⟩, is the initial

configuration vector and initial instruction vector, respectively.



Virus Machines And Their Matrix Representations 85

Definition 3 ([6]). A virus transmission matrix of Π is defined as

MΠ = [mk,j ]q×p+1,

where

mk,j =

−1, if instruction ik activates to remove a virus from host hj ,
w, if hj (or the environment) receives w viruses when ik activates,
0, otherwise.

Let us apply Definition 2 and Definition 3, to the deterministic ΠAdd in Figure

1 of Section 2.1. We have −→c 0 = ⟨a, b, 0⟩ and −→
i 0 = ⟨1, 0, 0⟩, to mean the following:

hosts h1 and h2 have a and b viruses, respectively, and the environment is empty,
with instruction i1 first activated. The virus transmission matrix MΠAdd

of ΠAdd

is given by Equation 1.

MΠAdd
=

−1 0 1
0 −1 1
0 0 0

 (1)

The idea of the virus transmission matrix MΠsub
is to show the effects of the

instructions (the rows) to the hosts and environment (the columns). For instance,
row 1 of MΠAdd

shows that i1 has no effect (hence the 0 element) on column 2 (for
h2). The effect of i1 is to remove 1 and add 1 virus each to h1 and the environment,
respectively. Similarly, row 2 shows that i2 removes and adds one virus to h2 and
the environment, respectively, but has no effect on h1. Lastly, i3 leads to halting
as no other instructions follow it.

Definition 4 ([6]). The instruction control matrices are matrices defined as

MI,1 = [ak,j ]q,q, and MI,2 = [bk,j ]q,q,

where

ak,j =

{
1, if (ik, ij) ∈ EI and wI((ik, ij)) = 1,
0, otherwise.

bk,j =

{
1, if (ik, ij) ∈ EI and wI((ik, ij)) = 2,
0, otherwise.

To obtain the configuration transition equation and the instruction
transition equation, we need to compute some partial results. Depending on
the existence or not of a virus in the origin host, the next configuration is changed
or not, respectively.

Define the following partial configuration vectors

−→c ′
t =

−→
i t ·MΠ ,−→c ′′

t = −→c t +
−→c ′

t,
−→c ′′′

t = −→c ′′
t Ip+1×p+2 (2)

where Ip+1×p+2 is the identity matrix with p + 1 rows and p + 2 columns, since
there is one column more than rows, the last column is filled with zeros. The idea



86 A. Ramı́rez-de-Arellano et al.

behind each vector is: −→c ′
t is the vector to be subtracted from −→c t if there was

a virus in the origin host. −→c ′′
t is the result of the subtraction between −→c t and

−→c ′
t. If there exists a −1, then it means that there were no viruses present in the

origin host. We extend the vector −→c ′′
t with one more zero in the vector −→c ′′′

t for
the following technical detail: Let mt = min(−→c ′′′

t ) the control coefficient at
instant t, then mt is 0 if there was at least one virus in the origin host and −1
otherwise. To obtain the next configuration vector we have the following result.

Theorem 1 ([6]). Let Π be a VM with q instructions and p hosts, MΠ is the virus

transmission matrix, −→c t and
−→
i t are the configuration and instruction vectors at

instant t, respectively. We obtain the next configuration vector −→c t+1 using the
following transition equation:

−→c t+1 = −→c t + (1 +mt)
−→c ′

t.

Let us apply Definition 4, Theorem 1 to MΠAdd
. Given −→c 0 = ⟨a, b, 0⟩ and

−→
i 0 = ⟨1, 0, 0⟩ we have

−→c ′
0 =

−→
i 0 ·MΠsub

= ⟨−1, 0, 1⟩,−→c ′′
0 = −→c 0 +

−→c ′
0 = ⟨(a− 1), b, 1⟩,

with −→c ′′′
0 = −→c ′′

0 · I3×4 = ⟨(a− 1), b, 1, 0⟩. We also have m0 = min((a− 1), b, 1, 0, 0)
so that if a > 0 we have m0 = 0. The next configuration of ΠAdd is

−→c 1 = −→c 0 + (1 +m0) · −→c ′
0 = ⟨a, b, 0⟩+−→c ′

0 = ⟨(a− 1), b, 1⟩.

Let us now move to definitions to obtain the equation for the next instruction,
using mt defined above.
Let the partial instruction vectors and control sum be

−→
i t,1 =

−→
i t ·MI,1,

−→
i t,2 =

−→
i t ·MI,2,

−→
i ′
t =

−→
i t,1 + 2

−→
i t,2, st = i′t · 1q×1 (3)

st is the control sum at instant t, being 1q×1 a column vector with q ones. st
is a scalar number that has 4 possible values:

st =



0, if current instruction
−→
i t has no next instructions,

1, if current instruction
−→
i t has one next instruction,

2, if current instruction
−→
i t has two next instructions,

both of them with an arc of weight 1,

3, if current instruction
−→
i t has two next instructions, one with an arc

of weight 1 and one with an arc of weight 2,
(4)

If we restrict the VM Π to be deterministic (that is, st ̸= 2), we can define the
next instruction it+1 as follows:



Virus Machines And Their Matrix Representations 87

−→
i t+1 =

(1− st)(2− st)(3− st)

6

−→
i t,1 +

(−st)(2− st)(3− st)

−2

−→
i t,1+

+
(−st)(1− st)(2− st)

−6
(mt ·

−→
i t,1 + (1 +mt)

−→
i t,2)

(5)

If we simplify the terms for
−→
i t+1, the following result provides the next instruction

to be activated.

Theorem 2 ([6]). Let Π be a VM of degree (p, q), MΠ the virus transmission

matrix, MI,1 and MI,2, the instructions control matrices, −→c t and
−→
i t are the

configuration and instruction vectors at instant t, respectively. We obtain the next

configuration vector
−→
i t+1 using the following instruction control equation:

−→
i t+1 =

2− st
6

(((mt2)s
2
t + (5−mt)st + 3)

−→
i t,1 + st(1− st)(1 +mt)

−→
i t,2), (6)

where
−→
i t,j = MI,j

−→
i t, for j ∈ {1, 2}, mt and st are the control coefficient and

the control sum at instant t, respectively.

Remark 1. Theorem 2 is true if and only if Π is deterministic.

Let us apply the partial instruction vectors, st, and Theorem 2 to MΠAdd
. Now

s0 = 3 from equation 4 since the two arcs of i1 has a sum of 3 for their weights. Due
to s0 = 3 only the rightmost term of equation 5 is nonzero, and more specifically

the term with
−→
i 0,2, providing

−→
i 1 = 1 · −→i 0,2 = ⟨2, 0, 0⟩. The next instruction to

be activated is i1 again due to a > 0 at instant t = 0.

3.2 Non-determinism case

As we stated in Remark 1, the definitions and results presented in the previous
subsection are for deterministic virus machines, however, this computing paradigm
develops nondeterministic computing models, so it should be taken into account.
In this subsection we develop the first ideas on this purpose.

First, Theorem 1 remains true for nondeterministic behavior, as the non-
determinism comes from the instruction that will be activated in the following
step. Because of this, we will focus on Theorem 2.

For being the nondeterministic case at an instant t, it means that the high-
est/least weight path is not unique, that is the case st = 2, where the two possible

next instructions have an arc of weight 1. In addition,
−→
i t,1 has two non-zero com-

ponents and
−→
i t,2 is the zero vector. Keeping the same notation as before and

applying Theorem 2 the following equation holds:

−→
i t+1 =

2− st
6

(((mt2)s
2
t + (5−mt)st + 3)

−→
i t,1 + st(1− st)(1 +mt)

−→
i t,2),



88 A. Ramı́rez-de-Arellano et al.

Evaluating the variables we have that
−→
i t+1 is the zero vector. To alleviate this

problem, we propose an extension of the equation by adding the following term
st(1−st)(3−st)

−2

−→
i t,1. Thus, the following Theorem holds:

Theorem 3. Let Π be a VM of degree (p, q), MΠ the virus transmission matrix,

MI,1 and MI,2, the instructions control matrices, −→c t and
−→
i t are the configuration

and instruction vectors at instant t, respectively. We obtain the next configuration

vector
−→
i t+1 using the following auxiliary instruction control equation:

−→
i ′′
t+1 =

2− st
6

(((mt2)s
2
t + (5−mt)st + 3)

−→
i t,1 + st(1− st)(1 +mt)

−→
i t,2)+

+
st(1− st)(3− st)

−2

−→
i t,1,

(7)

where
−→
i t,j = MI,j

−→
i t, for j ∈ {1, 2}, mt and st are the control coefficient and

the control sum at instant t, respectively.

The vector
−→
i ′′
t+1 is a binary vector that can be written as

−→
i ′′
t+1 =

∑
k∈K

ek,

where K ⊆ {1, . . . , q}, and ek is the corresponding euclidean basis vector. Then
instruction control equation holds:

−→
i t+1 = ek′ ,

where k′ is nondeterministically chosen from the set K.

Let us show the example presented in Subsection 2.2 to clarify this. First, we

have −→c 0 = ⟨1, 0, 0⟩ and −→
i 0 = ⟨1, 0, 0, 0⟩. The virus transmission matrix MΠnat is

given by Equation 8.

MΠnat =


−1 2 0
1 −1 0
0 −1 1
0 0 0

 (8)

As we said in the Subsection 2.2, at instant 3 a nondeterministic decision is
made, let us see how it works with the matrix representation. For that, let us see

the instant 2, we have
−→
i 2 = ⟨0, 0, 1, 0⟩, and −→c 2 = ⟨1, 1, 0⟩. From here we have the

following:

−→c ′
2 = ⟨0,−1, 1⟩,

−→c ′′
2 = ⟨1, 0, 1⟩,

−→c ′′′
2 = ⟨1, 0, 1, 0⟩.

Thus, m2 = 0. By Theorem 1, we have:



Virus Machines And Their Matrix Representations 89

−→c 3 = −→c 2 + (1 +mt)
−→c 2 = ⟨1, 0, 1⟩.

What is new here is how we obtain the following instruction vector. Here we
have the following:

−→
i 2,1 = ⟨1, 0, 0, 1⟩,
−→
i 2,2 = ⟨0, 0, 0, 0⟩,
−→
i ′
2 = ⟨1, 0, 0, 1⟩,
s2 = 2.

By the Theorem 3 we have
−→
i ′′
3 =

−→
i 2,1, which can be written as

−→
i ′′
3 = e1+e4 =

⟨1, 0, 0, 0⟩+ ⟨0, 0, 0, 1⟩. Thus, a nondeterministic decision arises choosing
−→
i 3 = e1

or
−→
i 3 = e4. That represents, exactly, the nondeterministic decision of going to i1

or i4 as expected.

4 Conclusion

In recent years, transforming or representing computing processes in linear algebra
operations has been a major scope because of their efficient implementations. In
this work, a matrix representation of virus machines has been presented with
two explicit examples, one with only the deterministic behavior, and the other
with nondeterministic behavior. It is interesting to note that this representation
opens an interesting framework for the invariants, which is crucial in the formal
verification of these devices.

A next direction is to apply the representation in this work to the simulation
of workflow patterns in [5]. Such patterns have been studied previously in the
framework of spiking neural P systems (in short, SN P systems), see for instance
[16, 17, 18]. In order to represent VMs for such patterns the representation needs to
be extended to (instruction or channel) parallel VMs, another interesting direction.
The matrix representation of VMs, perhaps with a corresponding implementation
in software, can help in the verification of the simulated patterns.

The matrix representation in [6] and extended in the present work further
opens the simulation in massively parallel processors, such as graphics processing
units (in short, GPUs). GPUs are also known as accelerators due to their more
optimised performance with linear algebra structures, compared to CPUs. For
instance, many P system simulations benefit from the use of GPUs [19]. More
specifically, the matrix representations of SN P systems, see for instance [7], result
in further optimisations in their GPU simulations [10, 14]. For instance the ideas
from [11] are experimentally validated in [20], with larger and exhaustive tests [21]
which outperform state-of-the-art GPU software libraries.

It is also interesting to continue investigating reachability, other static or dy-
namic properties of VMs, and the complexity of deciding such properties. For



90 A. Ramı́rez-de-Arellano et al.

instance, given some configuration −→c is a configuration −→c ′ reachable, where
−→c ̸= −→c ′? That is, is there a sequence of transitions starting from −→c and ends
with −→c ′? The matrix representation can help with this problem, as well as other
ideas such as liveness, deadness, coverability [22, 23].

Acknowledgements

F.G.C. Cabarle is supported by the QUAL21 008 USE project, “Plan Andaluz
de Investigación, Desarrollo e Innovación” (PAIDI) 2020 and “Fondo Europeo
de Desarrollo Regional” (FEDER) of the European Union, 2014-2020 funds. A.
Ramı́rez-de-Arellano is supported by the Zhejiang Lab BioBit Program (Grant
No. 2022BCF05).

References

1. Chen, X., Pérez-Jiménez, M.J., Valencia-Cabrera, L., Wang, B., Zeng, X.: Computing
with viruses. Theoretical Computer Science 623 (2016) 146–159

2. Ramı́rez-de-Arellano, A., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.: Generating,
computing and recognizing with virus machines. Theoretical Computer Science 972
(07 2023) 114077

3. Ramı́rez-de Arellano, A., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.: Basic arithmetic
calculations through virus-based machines. In Ferrández Vicente, J.M., Álvarez-
Sánchez, J.R., de la Paz López, F., Adeli, H., eds.: Bio-inspired Systems and Appli-
cations: from Robotics to Ambient Intelligence, Cham, Springer International Pub-
lishing (2022) 403–412

4. Ramı́rez-de Arellano, A., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.: Using virus
machines to compute pairing functions. International Journal of Neural Systems
33(05) (2023) 2350023

5. Ramı́rez-de-Arellano, A., Cabarle, F.G.C., Orellana-Mart́ın, D., Riscos-Núñez, A.,
Pérez-Jiménez, M.J.: Virus machines at work: Computations of workflow patterns.
International Summer Conference (ISC 24) of Decision Science Alliance, 6-7 June
2024 València, Spain

6. Ramı́rez-de Arellano, A., Cabarle, F.G.C., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.,
Adorna, H.N.: Matrix representation of virus machines. In Ferrández Vicente, J.M.,
Val Calvo, M., Adeli, H., eds.: Bioinspired Systems for Translational Applications:
From Robotics to Social Engineering, Cham, Springer Nature Switzerland (2024)
420–429

7. Zeng, X., Adorna, H., Mart́ınez-del Amor, M.Á., Pan, L., Pérez-Jiménez, M.J.: Ma-
trix representation of spiking neural P systems. In: Membrane Computing: 11th
International Conference, CMC 2010, Jena, Germany, August 24-27, 2010. Revised
Selected Papers 11, Springer (2011) 377–391

8. Adorna, H.N.: Matrix representations of spiking neural P systems: Revisited. arXiv
preprint arXiv:2211.15156 (2022)



Virus Machines And Their Matrix Representations 91

9. Jimenez, Z.B., Cabarle, F.G.C., de la Cruz, R.T.A., Buño, K.C., Adorna, H.N.,
Hernandez, N.H.S., Zeng, X.: Matrix representation and simulation algorithm of
spiking neural p systems with structural plasticity. Journal of Membrane Computing
1 (2019) 145–160

10. Carandang, J.P., Cabarle, F.G.C., Adorna, H.N., Hernandez, N.H.S., Mart́ınez-del
Amor, M.Á.: Handling non-determinism in spiking neural P systems: Algorithms
and simulations. Fundamenta Informaticae 164(2-3) (2019) 139–155

11. Mart́ınez-del Amor, M.Á., Orellana-Mart́ın, D., Pérez-Hurtado, I., Cabarle, F.G.C.,
Adorna, H.N.: Simulation of spiking neural p systems with sparse matrix-vector
operations. Processes 9(4) (2021) 690

12. Ballesteros, K.J., Cailipan, D.P.P., de la Cruz, R.T.A., Cabarle, F.G.C., Adorna,
H.N.: Matrix representation and simulation algorithm of numerical spiking neural p
systems. Journal of Membrane Computing 4(1) (2022) 41–55

13. Aboy, B.C.D., Bariring, E.J.A., Carandang, J.P., Cabarle, F.G.C., De La Cruz, R.T.,
Adorna, H.N., Mart́ınez-del Amor, M.Á.: Optimizations in cusnp simulator for spik-
ing neural p systems on cuda gpus. In: 2019 International Conference on High
Performance Computing & Simulation (HPCS), IEEE (2019) 535–542

14. Gungon, R.V., Hernandez, K.K.M., Cabarle, F.G.C., De la Cruz, R.T.A., Adorna,
H.N., Mart́ınez-del Amor, M.Á., Orellana-Mart́ın, D., Pérez-Hurtado, I.: Gpu im-
plementation of evolving spiking neural p systems. Neurocomputing 503 (2022)
140–161

15. Gheorghe, M., Lefticaru, R., Konur, S., Niculescu, I.M., Adorna, H.N.: Spiking
neural p systems: matrix representation and formal verification. Journal of Membrane
Computing 3(2) (2021) 133–148

16. Cabarle, F.G.C., Adorna, H.N.: On structures and behaviors of spiking neural p
systems and petri nets. In: Membrane Computing: 13th International Conference,
CMC 2012, Budapest, Hungary, August 28-31, 2012, Revised Selected Papers 13,
Springer (2013) 145–160

17. Cabarle, F.G.C., Buño, K.C., Adorna, H.N.: Time after time: Notes on delays in
spiking neural p systems. In Nishizaki, S.y., Numao, M., Caro, J., Suarez, M.T.,
eds.: Theory and Practice of Computation, Tokyo, Springer Japan (2013) 82–92

18. Song, T., Zeng, X., Zheng, P., Jiang, M., Rodriguez-Paton, A.: A parallel work-
flow pattern modeling using spiking neural p systems with colored spikes. IEEE
transactions on nanobioscience 17(4) (2018) 474–484

19. Mart́ınez-del-Amor, M.A., Garćıa-Quismondo, M., Maćıas-Ramos, L.F., Valencia-
Cabrera, L., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Simulating P systems on GPU
devices: a survey. Fundamenta Informaticae 136(3) (2015) 269–284

20. Hernández-Tello, J., Mart́ınez-Del-Amor, M.Á., Orellana-Mart́ın, D., Cabarle, F.G.:
Sparse matrix representation of spiking neural p systems on gpus. In Vaszil, G., Zan-
dron, C., Zhang, G., eds.: Proc. International Conference on Membrane Computing
(ICMC 2021), Chengdu, China and Debrecen, Hungary, 25 to 26 August 2021 (On-
line). (2021) 316–322

21. Hernández-Tello, J., Mart́ınez-Del-Amor, M.Á., Orellana-Mart́ın, D., Cabarle,
F.G.C.: Sparse spiking neural-like membrane systems on graphics processing units.
International Journal of Neural Systems 34(7) (2024) 2450038–2450038

22. Peterson, J.L.: Petri nets. ACM Computing Surveys (CSUR) 9(3) (1977) 223–252
23. Cabarle, F.G.C., Adorna, H.N.: On structures and behaviors of spiking neural p

systems and petri nets. In: Membrane Computing: 13th International Conference,



92 A. Ramı́rez-de-Arellano et al.

CMC 2012, Budapest, Hungary, August 28-31, 2012, Revised Selected Papers 13,
Springer (2013) 145–160


	Virus Machines And Their Matrix Representations
	Antonio Ramírez-de-Arellano1,2, Francis George C. Cabarle1,2,3, David Orellana-Martín1,2, Henry N. Adorna3, Mario J. Pérez-Jiménez1,2

