
Virus Machines: To tree or not to tree

Antonio Ramı́rez-de-Arellano1,2, Francis George C. Cabarle1,2,3, David
Orellana-Mart́ın1,2, Henry N. Adorna3, Mario J. Pérez-Jiménez1,2

1Research Group on Natural Computing, Department of Computer Science and
Artificial Intelligence, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
2SCORE lab, I3US, Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: aramirezdearellano@us.es, dorellana@us.es, fcabarle@us.es,

marper@us.es
3Department of Computer Science, University of the Philippines Diliman,
1101 Quezon City, Philippines
E-mail: fccabarle@up.edu.ph, hnadorna@up.edu.ph

Summary. In the present work we further study the computing power of virus machines,
or VMs in short. VMs are computing models inspired by the transmission networks of
viruses. VMs consist of hosts that contain zero or more virus objects, and an instruction
graph that controls the transmissions of virus objects among hosts. The present work
improves the understanding of the computing power of VMs by introducing normal forms.
Normal forms restrict the features or the number of such features in a given computing
model. For VMs we restrict in our normal forms the features such as the number of hosts,
number of instructions, and the number of virus objects in each host. After we recall some
known results on the computing power of VMs we give our normal forms. For instance
we show characterisations from previous inclusions regarding the computation of finite
sets of numbers. We also show new characterisations and normal forms for singleton sets
and finite sets. Another result using a new normal form are characterisations when the
instruction graphs of VMs are (not) restricted to tree graphs. New characterisations of
finite sets from VMs with tree instruction graphs are provided, with some conjectures or
open problems.

Keywords: Virus machines, Computational power, Natural computing, normal
forms.

1 Introduction

In the present work, we consider some normal forms for virus machines, in short,
VMs. Virus machines introduced in [1] are unconventional and natural computing
models inspired by networks of virus transmissions. More information on uncon-
ventional and natural computing is found in [2] and [3], respectively. From [1, 4]

94 A. Ramı́rez-de-Arellano et al.

it is shown that VMs are Turing complete, that is, they are algorithms capable
of general purpose computations. From such works it is also shown some VMs for
computing specific classes of (in)finite sets of numbers.

Virus machines consists of three subgraphs: a directed and weighted host graph
with nodes and edges referred to as hosts and channels, respectively; a directed
and weighted instruction graph where nodes are instructions and edge weights
determine which instruction to prioritise and next activate; an instruction-channel
graph which connects an edge between instructions and channels in the previous
graphs. Hosts contain zero or more virus objects, and activating an instruction
means opening a channel since channels are closed by default. Opening a channel
means virus objects from one host are transferred to another host.

Briefly, the idea of a normal form for some computing model is to consider
restrictions in the model while maintaining its computer power. That is, the con-
sideration of lower bounds for ingredients of a computing model is a natural direc-
tion for investigation. For instance a well-known normal form in language theory
is the Chomsky normal form, CNF in short, from [5]. Instead of having an infinite
number of forms to write rules in a grammar for context-free sets, CNF shows that
two forms are enough. Normal forms in unconventional and bio-inspired models
include [6], with recent and optimal results in [7], a bibliography in [8], and a
recent survey in [9].

The present work contributes the following to the study of virus machines and
their computing power. Some normal forms for VMs are provided, such as: provid-
ing characterisations (previously were inclusions) for generating families of finite
sets; showing new characterisations for finite sets of numbers using restrictions on
the number of required hosts, instructions, or viruses; new characterisations are
also given for singleton sets of numbers. We also consider a new restriction: lim-
iting or not limiting the instruction graph to be a tree graph, that is, an acylcic
graph. We show for instance that some VMs with a tree instruction graph and
with some lower bounds on the number of hosts, instructions, and viruses can
only compute finite sets. Our results on normal forms are then used to ask new
questions regarding other normal forms and restrictions on VMs.

The organisation of the present work is as follows. In Section 2 we recall in a
brief the features of VMs used previously in investigating their computing power.
Section 2.1 recalls some known results, while Section 2.2 provides new results
concerning normal forms of VMs, specifically for computing finite and singleton
sets. Section 3 provides new normal forms, for instance, when the instruction
graph is restricted to a tree. Lastly, Section 4 provides conclusions, conjectures,
and directions for further work.

2 VM with old ingredients

In this section, the computational power of virus machines in generating mode is
discussed, from previous works related to some novel results. In this work the syn-
tax and semantics, in addition to a simple explicit example, have been included in

Virus Machines: To tree or not to tree 95

the other work of this volume related to virus machines [10] For further knowledge
about the power of virus machines in generating sets we refer to [11, 4, 1]. First,
let us fix some notation.

Let NVM(p, q, n) be the family of sets of natural numbers generated by virus
machines with at most p hosts, q instructions, and n viruses in each host at any
instant of the computation. For unbounded restrictions, they are replaced by a ∗.

2.1 Old results

This subsection is devoted to reviewing results prior to this work regarding the
computing power of VMs with respect to certain classes or families of computable
numbers.

.

mk

h1

i1 im1
im1+1 imk−1 imk

imk+1

Fig. 1. A virus machine generating NFIN for NVM(1, ∗, ∗).

The state-of-the-art is presented in Table 1. The virus machines in the generat-
ing mode are Turing Universal; that is, they can generate recursively enumerable
sets of numbers (NRE) [1] for unbounded restrictions. This power is severely re-
duced when the last ingredient is reduced; more precisely, a characterization of
semilinear sets (SLIN) is proved for NVM(∗, ∗, 2) [11]. From now on, not char-
acterizations but contentions have been proven, for finite sets (NFIN) they are
contained in NVM(1, ∗, ∗) and NVM(∗, ∗, 1) [4]. Finally, the set of power of two
numbers is contained in NVM(2, 7, ∗) [4].

An interesting and natural question is can we further restrict or provide better
lower bounds, for known results about VMs? That is, provide “better” character-
isations of finite sets or even other families of sets such as the singleton sets, see
for instance Table 1. As we focus on finite sets later, let us see the VMs used in [4]
to generate finite sets. For NVM(1, ∗, ∗) the VM presented in Figure 1, and for

96 A. Ramı́rez-de-Arellano et al.

. . .

. . .

. . .1

h1

1

h2

1

hk−1

1

hk

m1 m2
mk−1

mk

i1 i2

i3

i4 i2k−2

i2k−3

i2k−1 i2k

Fig. 2. A virus machine generating NFIN for NVM(∗, ∗, 1).

Family of sets Relation Hosts Instructions Viruses

NRE [1] = * * *
SLIN [11] = * * 2
NFIN [4] ⊆ 1 * *

⊆ * * 1
{2n | n ≥ 0} [4] ⊆ 2 7 *

Table 1. Previous results: Minimum resources needed for generating family subsets of
natural numbers.

NVM(∗, ∗, 1) the Figure 2. The corresponding lemmas were called (viruses) and
(hosts) respectively, and we follow the same notation in this work.

2.2 New results

Finite sets

Having shown the generation of finite sets by a family of virus machines in the
previous section, the bounded ingredient was only one, let us see a family of virus
machines with more than one bounded ingredient.

Virus Machines: To tree or not to tree 97

Lemma 1 (Viruses-host). Let F = {m1, . . . ,mk} a finite set of natural numbers
greater than zero. Then F can be generated by a virus machine of 2 hosts, 2k + 1
instructions, and the 2 virus in each host at most.

.

2

h1

0

h2

2

2

i1

i2

i3

i4

i2mi−1

i2mi

i2mk−1

i2mk

Fig. 3. Virus machine generating the finite set F = {m1, . . . ,mk}.

Proof. Let Π = (Γ,H, I,DH , DI , GC , n1, n2, . . . , nk, i1, hout), where:

1. Γ = {v};
2. H = {h1, h2};
3. I = {i1, . . . , i2mk

};
4. DH = (H ∪ {hout}, {(h1, h2), (h1, hout), (h2, h1), (h2, hout)}, wH), where

wH((h1, h2)) = wH((h2, h1)) = 2 and wH((h1, hout)) = wH((h2, hout)) = 1;
5. DI = (I, EI , wI), where EI = {(ia, ia+1) | a ∈ {1, . . . , 2mk − 1}}∪

{(i2mi−1, i2mk
) |mi ∈ F},

wI((ij , ij′)) = 1 ∀(ij , ij′) ∈ EI ;
6. GC = (I ∪ EH , EC), where

EC = {{i2j+1, (h1, hout)}, {i2j , (h1, h2)} |j ∈ {0, . . . ,mk}, j even }∪
{{i2j+1, (h2, hout)}, {i2j , (h2, h1)} |j ∈ {0, . . . ,mk}, j odd };

7. n1 = 2 and n2 = 0;
8. hout = h0

A visual representation of this virus machine can be found in Figure 3. Let us
prove that for each mi ∈ F , there exists a computation of Π such that it produces
mi viruses in the environment in the halting configuration. Letmi be the generated
number; the following invariant holds:

98 A. Ramı́rez-de-Arellano et al.

φ(x) ≡
{
C2x = (2, 0, i2x+1, x) x even,
c2x = (0, 2, i2x+1, x) x odd,

for each 0 ≤ x ≤ mi − 1. In particular, φ(mi − 1) is true, let us suppose that
mi is odd, then the following computation is verified:

C2(mi−1) = (2, 0, i2(mi−1),mi − 1),

C2mi
= (1, 0, i2mk

,mi),

C2mi+1 = (1, 0,#,mi),

For mi even the computation is analogous, hence the computation halts in
2mi + 1 steps and the number generated is mi.

Another interesting result is that this inclusion is strict.

Proposition 1. NFIN ⊊ NVM(2, ∗, 2).

Proof. Inclusion is direct by the Lemma 1. Let us focus now on the inequality; for
that, we construct a virus machine from [10] that generates the set of all natural
numbers except the zero, which verifies the restrictions of the proposition.

Let ΠNat = (Γ,H, I,DH , DI , GC , 1, 0, i1, hout), where:

1. Γ = {v};
2. H = {h1, h2};
3. I = {i1, . . . , i4};
4. DH = (H ∪ {hout}, {(h1, h2), (h2, hout), (h2, h1)}, wH), where

wH((h1, h2)) = 2 and wH((h2, hout)) = wH((h2, h1)) = 1;
5. DI = (I, EI , wI), where EI = {(i1, i2), (i2,3), (i3, i1), (i3, i4)}, wI((ij , ij′)) =

1 ∀(ij , ij′) ∈ EI ;
6. GC = (I ∪ EH , EC), where

EC = {{i1, (h1, h2)}, {i2, (h2, h1)}, {i3, (h2, hout)}};
7. hout = h0;

1

h1 h2
2

i1 i2 i3 i4

Fig. 4. Virus machine generating the set of natural numbers N \ {0}.

Virus Machines: To tree or not to tree 99

A visual representation of this virus machine can be found in Fig. 4. Now, let
us prove that for each n ∈ N, there exists a halting computation generating the
number n. For generating this number, the following invariant holds:

φ(k) ≡ C3k = (1, 0, i1, k), for each 0 ≤ k ≤ n− 1

In particular, φ(n − 1) is true, then the following configuration is verified
C3(n−1) = (1, 0, i1, n − 1), from here, after the 4 transition steps the halting con-
figuration is reached C3n+1 = (1, 0,#, n), whose output is the natural number
n.

With this proposition a new question arises: can we get not only the inclusion
but the characterization of the finite sets by a family of virus machines? This is
answered in the next section.

Singleton sets

Now let us move to the second family of sets, the Singleton sets, these are sets of
natural numbers with only one element, in this work we include the empty set in
this family.

Theorem 1. The following sets of numbers are equivalent to singleton sets:

1. NVM(1, ∗, 1);
2. NVM(∗, 1, ∗).

Proof. The proof of equivalence is done by the double inclusion technique.

1. Let us start with the left side inclusion, let Γ = {v} be a singleton set of
natural number v ∈ N, then it can be generated by the VM Πsing1 of degree
(1, 1) depicted in Figure 5, the initial configuration is C0 = (1, i1, 0) and in the
following configuration, one virus is consumed and replicated by the weight
of the arc, that is v, and sent to the environment, leading to the halting
configuration C1 = (0,#, v). Thus, after one transition step, the set generated
is {v}.
For the reverse inclusion, suppose any VM with only one host and one virus:
the host can only be attached to the environment, and let us fix that the
weight of that channel is w ∈ N. Thus, the only number generated is w or
none, depending on the instruction graph (if the computation halts or not).
Thus, we generate a singleton set.

2. For the inclusion on the left side we can use the VMΠsing1 depicted in Figure 5
as it only has one instruction and the inclusion has already been proven.
Let us focus on the inclusion of the right side. With only one instruction, there
are two possibilities in the instruction graph:
• The node with a self-arc, which creates an infinite loop, thus a non-halting

computation and generating the empty set.

100 A. Ramı́rez-de-Arellano et al.

1

h1

v

i1

Fig. 5. The VM Πsing1 generating the singleton set {v}.

• The node with no arcs, thus the machine, halts after only one transition
step as there is no other possible path. In this sense, two options can be
separated:
– The instruction is attached to a channel which is attached to the envi-

ronment,
– The instruction is not attached to a channel which is attached to the

environment, thus the number generated is 0.

3 To tree or not to tree

Until now, the computational power of virus machines was studied by bound-
ing/unbounding the three main ingredients: hosts, instructions, and the number
of viruses at any time of computation. Nevertheless, virus machines are heteroge-
neous networks divided by three graphs, thus more restrictions can be studied, for
example, the kinds of graphs that form the instruction graph.

In this section, a novel and interesting scope is proposed to discuss the com-
putational power of virus machines: the instruction graph properties.

For this study, several notation and clarifications must first be presented.

Definition 1. A path in a directed graph G = (V,E) is a sequence of edges
(e1, . . . , en−1), for which there is a sequence of vertices (v1, . . . , vn), such that
ei = (vi, vi+1), for each i = 1, . . . , n − 1, and vi ̸= vj, for all i, j = 1, . . . , n. Un-
der the same conditions, if (vn, v1) ∈ E, then the path is called a cycle. A graph
without cycles is called a tree. The depth of a tree is the longest path of the tree.

We say that v1 is connected to vn if there is a path w = (e1, . . . , en−1), whose
sequence of vertices is (v1, . . . , vn). We denote by V (vi) ⊆ V the subset of vertices
that are connected by a path from vi.

A graph G = (V,E) is connected if there are paths that contain each pair of
vertices. A connected component of the graph G is a subgraph graph G′ = (V ′, E′),
such that V ′ ⊆ V , E′ ⊆ E where (vi, vj) ∈ E′ if and only if (vi, vj) ∈ E, and
vi, vj ∈ V ′ are connected.

Virus Machines: To tree or not to tree 101

Proposition 2 (Invariance). If the instruction graph DI of a virus machine Π
of degree (p, q), with p, q ≥ 1,

Π = (H, I,DH , DI , GC , n1, . . . , np, i1, hout),

is not connected, then there exists another virus machine Π ′ of degree (p, q′), with
q′ ≤ q, which has the same computation.

Proof. Let Π be the virus machine fixed in the statement, setting the instruction
graph to DI = (I, EI , wI), as it is not connected; then I(i1) ̸= I. Let Π ′ be the
virus machine of degree (p, q′) = |I(i1)|), defined as Π but with a new instruction
graph DI(i1) = (I(i1), EI(i1), wI(i1)).

Due to the semantics associated with virus machines, any instruction that can
be activated must be connected by a path from the initial instruction; thus, the
set of instructions of Π that can be activated at some instant of the computation
is contained in I(i1), therefore Π ′ has the same computation.

Using this result, from now on, all the virus machines defined are supposed to
have a connected instruction graph, with the connected component I(i1), being i1
the initial instruction. In addition, the same notation of the components of a virus
machine Π is used for the following results.

3.1 Instruction graph as a tree

Proposition 3. If the instruction graph is a tree, then all computations halt. In
addition, the number of transition steps is bounded by the depth of the tree.

Having this restriction on the instruction graph is a limitation of the power of
these devices. More precisely, we lose Turing universality; let us see a characteri-
zation of finite sets of natural numbers with this restriction. First, let us fix some
notation:

Let NVMtree(p, q, n) be the family of sets of natural numbers that can be
generated by a virus machine with a tree instruction graph, at most p hosts, q
instructions and n virus in each host at any instant of computation. In case there
is no restriction, it is written as ∗. Let NFIN be the family of finite sets of natural
numbers.

The following results hold:

Corollary 1. NVMtree(∗, ∗, ∗) ⊆ NFIN

Proof. The inclusion NVMtree(∗, ∗, ∗) ⊆ NFIN is direct by the Proposition 3, as
all computations halt, then every virus machine halts in a finite number of steps,
thus the set of numbers that can be generated is finite.

Theorem 2. NVMtree(p, ∗, ∗) = NFIN , for each p ≥ 1.

102 A. Ramı́rez-de-Arellano et al.

Proof. The left inclusion NVMtree(∗, ∗, ∗) ⊆ NFIN is direct from Corollary 1.
The right inclusion NFIN ⊆ NVMtree(p, ∗, ∗), for each p ≥ 1, is proved in

Lemma 1 (host) of the work [4], where the virus machine presented was Figure 1,
which has the instruction graph as a tree.

Corollary 2. NVMtree(∗, ∗, ∗) = NFIN .

Proof. Direct from Corollary 1 and Theorem 2.

Theorem 3. NVMtree(∗, ∗, n) = NFIN , for each n ≥ 1.

Proof. Again, the left inclusion NVMtree(∗, ∗, ∗) ⊆ NFIN is directly related to
the Corollary 1.

The right inclusion NFIN ⊆ NVMtree(∗, ∗, n), for each n ≥ 1 is proved in
Lemma 2 (viruses) of the work [4], where a virus machine with an instruction
graph as a tree was presented, generating finite number sets.

Another interesting result occurs if we also bound the amount of hosts:

Theorem 4. NVMtree(p, ∗, n) = NFIN , for each p ≥ 2, and n ≥ 2.

Proof. The right-hand inclusion is by applying again the Corollary 1. For the
left side, we can use the Lemma 1 where the VM presented in Figure 3 has the
instruction graph as a tree, therefore, NVMtree(p, ∗, n) ⊆ NFIN .

Family of sets Symbol Hosts Instructions Viruses

NFIN (Corollary 2) = * * *
(Theorem 2) = 1 * *
(Theorem 3) = * * 1
(Theorem 4) = 2 * 2

Table 2. Minimum resources needed for generating/characterizing family subsets of
natural numbers with the instruction graph as a tree.

We summarise our main results so far in Table 3.

4 Conjectures and conclusions

In the present work we considered normal forms for VMs: first, by summarising
known results for some families of number sets (see Table 1); next, by providing
some new results and showing strict characterisations from previous inclusions (see
Table 2). We summarise our results and ask new questions for our sequel works
regarding normal forms of VMs in Table 3. The rows marked with “?” in Table
3 are open questions, such as if NVMtree(∗, 2, ∗) is a strict superset of NFIN. It

Virus Machines: To tree or not to tree 103

is also interesting to consider “new” normal forms, such as the graph properties
of the host graph and the instruction-channel graph. For instance, considering the
weights of the host graph, or if a bijection exists between instructions and channels.

One reason for the interest in normal forms is the consideration of “jumps” in
computing power from one family of computable sets to another. For instance in
Table 1 we know that VMs with unbounded number of hosts, instructions, and
viruses are Turing machines, that is, they are general purpose computers. In Table
3 we see that if we are allowed only one host and one virus in a VM, with an
arbitrary number of instructions (the graph is not a tree) then the computing
power has a significant jump down to singleton sets. Besides realising such jumps,
it is also interesting to realise frontiers or thresholds of the ingredients between
families of sets.

Another interesting direction is to consider “small” VMs in the sense of [12, 13].
That is, give lower bounds to the number of instructions or hosts required to
maintain a certain computing power, in fact, authors in [14] constructed a small
universal VM using 9 hosts and 33 instructions. It would be interesting to study
also the lower bound number to compute NFIN, SLIN. From Table 1 for instance
it is interesting to give better lower bounds for characterisations of NRE and
SLIN . At least for VMs with instruction graph as a tree, Table 2 provides better
lower bounds.

In [15] and its sequel [10] a matrix representation is given for VMs. It is in-
teresting to consider properties in the present work, such as lowering the values
for ingredients or restriction to a tree graph, using such a representation. Another
direction is to consider the results and conjectures in the present work for VMs in
the accepting and function computing modes as in [4], or with parallel VMs as in
[16, 17].

Family of sets Symbol Hosts Instructions Viruses Tree Inst. Graph

Singleton (Theorem 1) = 1 * 1 No
(Theorem 1) = * * 1 No
(Theorem 1) = * 1 * No

NFIN (Theorem 2) = 1 * * Yes
(Theorem 3) = * * 1 Yes
(Theorem 4) = 2 * 2 Yes

(Proposition 1) ⊊ 2 * 2 No
⊊? * 2 * Yes
⊆? * 3 * Yes

Table 3. Summary of the minimum resources needed for generating/characterizing fam-
ily subsets of natural numbers.

104 A. Ramı́rez-de-Arellano et al.

Acknowledgements

F.G.C. Cabarle is supported by the QUAL21 008 USE project, “Plan Andaluz
de Investigación, Desarrollo e Innovación” (PAIDI) 2020 and “Fondo Europeo
de Desarrollo Regional” (FEDER) of the European Union, 2014-2020 funds. A.
Ramı́rez-de-Arellano is supported by the Zhejiang Lab BioBit Program (Grant
No. 2022BCF05).

References

1. Valencia-Cabrera, L., Pérez-Jiménez, M.J., Chen, X., Wang, B., Zeng, X.: Basic virus
machines. In: 16th International Conference on Membrane Computing (CMC16).
(2015) 323–342

2. Adamatzky, A.: Handbook Of Unconventional Computing (In 2 Volumes). World
Scientific (2021)

3. Bäck, T., Kok, J.N., Rozenberg, G.: Handbook of natural computing. Springer,
Heidelberg (2012)

4. Ramı́rez-de-Arellano, A., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.: Generating,
computing and recognizing with virus machines. Theoretical Computer Science 972
(07 2023) 114077

5. Chomsky, N.: On certain formal properties of grammars. Information and control
2(2) (1959) 137–167

6. Ibarra, O.H., Păun, A., Păun, G., Rodŕıguez-Patón, A., Sośık, P., Woodworth, S.:
Normal forms for spiking neural p systems. Theoretical Computer Science 372(2-3)
(2007) 196–217

7. Macababayao, I.C.H., Cabarle, F.G.C., de la Cruz, R.T.A., Zeng, X.: Normal forms
for spiking neural p systems and some of its variants. Information Sciences 595
(2022) 344–363

8. Cabarle, F.G.C., Dela Cruz, R.T.A.: A bibliography of normal forms in spiking neural
P systems and variants. In: Bulletin of the International Membrane Computing
Society. Volume 12. (12 2021) 89–91

9. Cabarle, F.G.C.: Thinking about spiking neural p systems: some theories, tools, and
research topics. Journal of Membrane Computing (2024) 1–20

10. Ramı́rez-de-Arellano, A., Cabarle, F.G.C., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.,
Adorna, H.N.: Virus machines and their matrix representations. 20th Brainstorm-
ing Week on Membrane Computing and First Workshop on Virus Machines, 24–26
January 2024, Sevilla, Spain (2024)

11. Chen, X., Pérez-Jiménez, M.J., Valencia-Cabrera, L., Wang, B., Zeng, X.: Computing
with viruses. Theoretical Computer Science 623 (2016) 146–159

12. Cabarle, F.G.C., de la Cruz, R.T.A., Adorna, H.N., Dimaano, M.D., Peña, F.T.,
Zeng, X.: Small spiking neural p systems with structural plasticity. Enjoying Natural
Computing: Essays Dedicated to Mario de Jesús Pérez-Jiménez on the Occasion of
His 70th Birthday (2018) 45–56

13. Păun, A., Păun, G.: Small universal spiking neural p systems. BioSystems 90(1)
(2007) 48–60

14. Ramı́rez-de Arellano, A., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.: Using virus
machines to compute pairing functions. International Journal of Neural Systems
33(05) (2023) 2350023

Virus Machines: To tree or not to tree 105

15. Ramı́rez-de Arellano, A., Cabarle, F.G.C., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.,
Adorna, H.N.: Matrix representation of virus machines. In Ferrández Vicente, J.M.,
Val Calvo, M., Adeli, H., eds.: Bioinspired Systems for Translational Applications:
From Robotics to Social Engineering, Cham, Springer Nature Switzerland (2024)
420–429

16. Ramı́rez-de-Arellano, A., Orellana-Mart́ın, D., Pérez-Jiménez, M.J.: Parallel virus
machines. Submitted to Journal of Membrane Computing

17. Ramı́rez-de-Arellano, A., Cabarle, F.G.C., Orellana-Mart́ın, D., Riscos-Núñez, A.,
Pérez-Jiménez, M.J.: Virus machines at work: Computations of workflow patterns.
International Summer Conference (ISC 24) of Decision Science Alliance, 6-7 June
2024 València, Spain

	Virus Machines: To tree or not to tree
	Antonio Ramírez-de-Arellano1,2, Francis George C. Cabarle1,2,3, David Orellana-Martín1,2, Henry N. Adorna3, Mario J. Pérez-Jiménez1,2

