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Preface

The Twentieth Brainstorming Week on Membrane Computing (BWMC) was held
in Sevilla, from January 24 to 26, 2024, hosted by the Research Group on Natural
Computing (RGNC) from the Department of Computer Science and Artificial
Intelligence of Universidad de Sevilla. The first edition of BWMC was organized
at the beginning of February 2003 in Rovira i Virgili University, Tarragona, and
all the next editions have been taking place in Sevilla since then, always at the
end of January and/or at the beginning of February.

In the style of previous meetings in this series, was conceived as a period of
active interaction among the participants, with the emphasis on exchanging ideas
and cooperation. Several “provocative” talks were delivered, mainly devoted to
open problems, research topics, announcements, conjectures waiting for proofs, or
ongoing research works in general (involving both theory and applications). Joint
work sessions were scheduled on the afternoons to allow for collaboration among
the about 30 participants – see the list in the end of this preface.

This edition has been celebrated in conjunction with the 1st International
Workshop on Virus Machines, where this new model of computation was intro-
duced to the P community and new ideas raised from the collaboration with the
attendants of the conference.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of papers from this volume will be considered for publication
in the International Journal of Neural Systems, published by World Scientific
(https://www.worldscientific.com/worldscinet/ijns).

Other papers elaborated during the 2024 edition of BWMC will be submitted
to other journals or to suitable conferences. The reader interested in the final
version of these papers is advised to check the current bibliography of membrane
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computing available in the domain website http://ppage.psystems.eu.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Henry N. Adorna, University of Philippines Diliman (Philippines)
hnadorna@up.edu.ph

2. José A. Andreu Guzmán, Universidad de Sevilla (Spain), andreuguz-
man36@gmail.com

3. Rocco Ascone, University of Trieste (Italy) rocco.ascone@phd.units.it
4. Peter Battyányi, University of Debrecen (Hungary),

battyanyi.peter@inf.unideb.hu
5. Giulia Bernardini, University of Trieste (Italy), giulia.bernardini@units.it
6. Francis George C. Cabarle, Universidad de Sevilla (Spain), fcabarle@us.es
7. Alberto d’Onofrio, University of Verona (Italy), ???
8. Giuditta Franco, University of Verona (Italy), giuditta.franco5@gmail.com
9. Rudolf Freund, TU Wien (Austria), rudi@emcc.at
10. Carmen Graciani, Universidad de Sevilla (Spain), cgdiaz@us.es
11. Anna Kuczik University of Debrecen (Hungary), kuczik.anna@inf.unideb.hu
12. Alberto Leporati University of Milan–Bicocca (Italy) al-

berto.leporati@unimib.it
13. Luca Manzoni, University of Trieste (Italy), lmanzoni@units.it
14. Fareed Muhammad Mazhar, University of Milano-Bicocca (Italy), muham-

madmazhar.fareed@studenti.univr.it
15. David Orellana-Mart́ın, Universidad de Sevilla (Spain), dorellana@us.es
16. Andrei Păun, Universidad de Sevilla (Spain), andreipaun@gmail.com
17. Mario J. Pérez-Jiménez, Universidad de Sevilla (Spain), marper@us.es
18. Prithwineel Paul, University of Engineering and Management (India), prith-

wineel@iem.edu.in
19. Antonio Ramı́rez-de-Arellano, Universidad de Sevilla (Spain), aramirezdearel-

lano@us.es
20. Agust́ın Riscos-Núñez, Universidad de Sevilla (Spain), ariscosn@us.es
21. Álvaro Romero-Jiménez, Universidad de Sevilla (Spain), romero.alvaro@us.es
22. José M. Sempere, Universitat Politècnica de València (Spain), jsem-

pere@dsic.upv.es
23. Bosheng Song, Hunan University (China), boshengsong@hnu.edu.cn
24. Luis Valencia-Cabrera, Universidad de Sevilla (Spain), lvalencia@us.es
25. Davide Valcamonica, University of Milano-Bicocca (Italy),
26. György Vaszil, University of Debrecen (Hungary), vaszil.gyorgy@inf.unideb.hu
27. Tao Wang, Xihua University (China), wangatao2005@163.com
28. XiangXiang Zeng, Hunan University (China), xzeng@hnu.edu.cn
29. Gexiang Zhang, Chengdu University of Information Technology (China),

zhgxdylan@126.com



Preface vii

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Universidad de Sevilla (http://www.gcn.us.es)– and
all the members of this group were enthusiastically involved in this (not always
easy) work.

The meeting was partially supported from various sources: (i) VII Plan Propio,
Vicerrectorado de Investigación de la Universidad de Sevilla, (ii) Department of
Computer Science and Artificial Intelligence from Universidad de Sevilla, (iii) the
SCORE Lab of the Universidad de Sevilla (iv) the Research Institute of Computer
Engineering (I3US) of the Universidad de Sevilla, and (v) the BioBit project from
Zhejiang Lab.

The Editors
(Sep 2024)
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Global Attractors of Reactantless and
Inhibitorless Reaction Systems

Rocco Ascone, Giulia Bernardini, Luca Manzoni

1University of Trieste
E-mail: rocco.ascone@phd.units.it, giulia.bernardini@units.it,

lmanzoni@units.it

Summary. In this study, we explore the computational complexity of deciding the ex-
istence of fixed points and cycles that can be reached from any other states (also called
global attractors) in the dynamics of inhibitorless and reactantless reaction systems. The
same problems were proved to be PSPACE-complete in the case of unconstrained re-
action systems. We show, in contrast, that in the considered resource-bounded classes
deciding whether a global fixed point attractor exists can be done in polynomial time.
Furthermore, we prove that only trivial cycles consisting of a single state can exist in the
dynamics of inhibitorless systems, while in reactantless systems cycles of two states may
occur, and it is coNP-hard to decide their existence.

1 Introduction

Introduced nearly two decades ago by Ehrenfeucht and Rozenberg [1], reaction
systems are an abstract computational model inspired by the chemical reactions
occurring in living cells. The notion at the heart of this model is that the biochem-
ical processes within a cell can be simulated using a limited collection of entities
that represent various substances, alongside a set of rules that mimic reactions. A
reaction is characterized by its reactants, inhibitors, and products, and it occurs
when the set of entities currently present in the cell (ie the system’s state) includes
all reactants and lacks any inhibitors, resulting in the reaction’s products.

Whenever a set of reactions takes place in a certain state, the system’s sub-
sequent state is determined by the union of the products of all the occurred re-
actions. This process defines a dynamical system whose points are given by all
the possible subsets of entities, ie all possible states of the reaction system. De-
termining the computational complexity of deciding on the occurrence of various
behaviours of such dynamical systems has been the object of a great deal of re-
search work [2, 3, 4, 5, 6, 7, 8].

Reaction systems operate on a qualitative basis, meaning that the presence
of a reactant in a given state implies it is available in sufficient quantities for all
reactions that require it, thus avoiding any conflicts over shared resources. Other
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related models have been proposed in the literature that waive this assumption,
see eg [9, 10, 11, 12, 13]. Nevertheless, the computational power of the simpler
qualitative model has been demonstrated by several studies [14, 15, 16, 17, 18]
showing that reaction systems can be effectively used to simulate various biological
processes.

Although the conventional framework for reaction systems does not limit the
number of reactants and inhibitors involved in each reaction, an alternative branch
of research concentrates on systems with constrained resources. Ehrenfeucht et
al. [19] first investigated how bounding the number of reactants and inhibitors in
the reactions can affect the kinds of functions that a reaction system can define.
Manzoni et al. [20] then classified resource-bounded systems in such a way that the
reaction functions enjoy specific properties within each class: in particular, they
identified the class of inhibitorless reaction systems, in which all reactions have
an empty set of inhibitors; the class of reactantless systems in which the set of
reactants is always empty; and the class of minimal-resources systems, later named
additive [21], in which each reaction only uses one reactant and no inhibitors.

Dennunzio et al. [22] studied the complexity of reachability in several subclasses
of inhibitorless and reactantless systems; Azimi et al. [23] studied how to list all
steady states of a system whose reactions have a small quantity of both reactants
and inhibitors; and Ascone et al. investigated the computational complexity of
problems related to the existence of fixed points and attractors in reactantless and
inhibitorless systems [24] and in additive systems [21].

Contributions.

In this paper, we study the computational complexity of deciding on the existence
of fixed points and cycles that are also global attractors (ie they can be reached
from every other state) in inhibitorless and reactantless reaction system. All these
problems were shown to be PSPACE-complete in unconstrained reaction sys-
tems [25]: in contrast, we show that disabling either the set of reactants or the set
of inhibitors reduces to polynomial the complexity of deciding whether a global
fixed point attractor exists, as well as determining if a given state is a global at-
tractor. Furthermore, we prove that only trivial cycles consisting of a single state
can exist in the dynamics of inhibitorless systems, while in reactantless systems
cycles of two states may occur, and it is coNP-hard to decide on their existence.
Table 1 summarises our results.

2 Basics Notions

Given a finite set S of entities, a reaction a over S is a triple (Ra, Ia, Pa) of subsets
of S; we call Ra the set of reactants, Ia the set of inhibitors, and Pa the nonempty
set of products. Note that, in this paper, the reactants and inhibitors of a reaction
are allowed to be empty sets as in the original definition of reaction systems [1]. The
set of all reactions over S is denoted by rac(S). A reaction system (RS) A = (S,A)
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Problem RS(∞,∞) RS(0,∞) RS(∞, 0)

A given state is a global attractor PSPACE-c [25] P (Cor. 13) P (Cor. 5)

∃ global fixed point attractor PSPACE-c [25] P (Cor. 14) P (Cor. 6)

∃ global cycle attractor
of length at least k

k = 2 PSPACE-c [25] coNP-hard (Thm. 18) ∄ (Lemma 7)

k > 2 PSPACE-c [25] ∄ (Pro. 15) ∄ (Lemma 7)

Table 1: Computational complexity of the problems studied in this work for dif-
ferent classes of reaction systems. RS(∞,∞), RS(0,∞) and RS(∞, 0) denote
unconstrained, reactantless and inhibitorless reaction systems, respectively (see
Def. 1). Light-blue cells contain the results proved in this paper.

where S consists of the finite set of entities S, called the background set, and a set
A ⊆ rac(S) of reactions over S.

We call any subset of S a state of the reaction system; a reaction a is enabled
in a state T when Ra ⊆ T and Ia ∩ T = ∅, and the set of all the reactions from
A enabled in T is denoted by enA(T ). The result function resa : 2S → 2S of a
reaction a, where 2S denotes the power set of S, is defined as

resa(T ) :=

{
Pa if a is enabled in T

∅ otherwise.

The definition of resa naturally extends to sets of reactions: given any T ⊆ S and
A ⊆ rac(S), we define resA(T ) :=

⋃
a∈A resa(T ). Consistently, the result function

resA of the whole RS A = (S,A) is defined as equal to resA, i.e., the result function
of the whole set of reactions of the reaction system. In this way, any RS A = (S,A)
induces a discrete dynamical system with state set 2S and next state function resA.

In this paper, we are interested in the dynamics of RS, i.e., the study of the
successive states of the system under the action of the result function resA starting
from some initial set of entities. The orbit or state sequence of a given state T of
a RS A is defined as the sequence of states obtained by subsequent iterations of
resA starting from T , namely the sequence (T, resA(T ), res

2
A(T ), . . . ). Note that

since S is finite, for any state T the sequence (resnA(T ))n∈N is always ultimately
periodic. In particular, the orbit of a state T is a cycle of length k if there exists
k ∈ N such that reskA(T ) = T , and reshA(T ) ̸= T for every h < k. In the special
case where k = 1, T is said to be a fixed point.

Any set of cycles forms an invariant set for A, that is, a set of states U ⊆ 2S

such that ∪U∈U{resA(U)} = U . In particular, it is also true that any invariant
set for A is a set of cycles [25]. A local attractor for A is an invariant set U such
that there exists an external state T /∈ U such that resA(T ) ∈ U . An invariant
set U is a global attractor if for all states T ∈ 2S there exists k ∈ N such that
reskA(T ) ∈ U , i.e., U is eventually reached from every possible state of A. When a
global attractor U consists of only one state T , we say that T is a global fixed-point
attractor. Similarly, U is a global cycle attractor if all the states in U belong to the
same cycle.
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We now recall the classification of reaction systems in terms of the number of
resources employed per reaction [20].

Definition 1 ([20]). Let i, r ∈ N. The class RS(r, i) consists of all RS having
at most r reactants and i inhibitors for reaction. We also define the (partially)
unbounded classes RS(∞, i) =

⋃∞
r=0 RS(r, i), RS(r,∞) =

⋃∞
i=0 RS(r, i), and

RS(∞,∞) =
⋃∞

r=0

⋃∞
i=0 RS(r, i).

We will call RS(0,∞) the class of reactantless systems, and RS(∞, 0) the class
of inhibitorless systems.

Note that the classification of Definition 1 does not consider the number of
products as a parameter because RS can always be assumed to be in singleton
product normal form [26]: any reaction (R, I, {p1, . . . , pm}) can be replaced by the
set of reactions (R, I, {p1}), . . . , (R, I, {pm}) which produce the same result.

Five equivalence classes of RS implied by Definition 1 have a characterisation
in terms of functions over the Boolean lattice 2S [20], listed in Table 2. Recall that

Class of RS Subclass of 2S → 2S

RS(∞,∞) all
RS(0,∞) antitone
RS(∞, 0) monotone
RS(1, 0) additive
RS(0, 0) constant

Table 2: Functions computed by several classes of RS.

a function f : 2S → 2S is antitone if X ⊆ Y implies f(X) ⊇ f(Y ), monotone if
X ⊆ Y implies f(X) ⊆ f(Y ), additive (or an upper-semilattice endomorphism)
if f(X ∪ Y ) = f(X) ∪ f(Y ) for all X,Y ∈ 2S . We say that the RS A = (S,A)
computes the function f : 2S → 2S if resA = f .

3 Global Attractors of Inhibitorless RS

In this section, we study the complexity of deciding the existence of a global fixed-
point attractor or a global cycle attractor in inhibitorless reaction systems.

3.1 Existence of a global fixed-point attractor

We begin with a simple observation which follows immediately from the definition
of global fixed-point attractors.

Observation 2. A reaction system with a global fixed-point attractor cannot have
any other fixed points or cycles.
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In particular, Observation 2 implies that if a global fixed-point attractor ex-
ists, it is unique. Proposition 3 provides a characterization of global fixed-point
attractors for monotone functions.

Proposition 3. Let S be a finite set of n elements, f : 2S → 2S a monotone
function and T a fixed point for f consisting of t elements. Then, T is a global
fixed-point attractor for f if and only if f t(∅) = T = fn−t(S).

Proof. ⇒ Consider the sequence ∅ ⊊ f(∅) ⊊ · · · ⊊ fm(∅) = fm+1(∅). If it
was fm(∅) ⊊ T , there would exist a fixed point different from T , therefore T
would not be a global attractor by Observation 2. Thus it must be fm(∅) = T
and since |T | = t, because of the monotonicity of f , it must also be m ≤ t,
implying that f t(∅) = T . Consider now the sequence S ⊋ f(S) ⊋ · · · ⊋
fk(S) = fk+1(S). If it was fk(S) ⊋ T , then there would exist a fixed point
different from T , therefore T would not be a global attractor. We obtain that
fk(S) = T ; since t = |T | = |fk(S)| ≤ n − k then by monotonicity it must be
k ≤ n− t, thus fn−t(S) = T .

⇐ We need to prove that T = f t(∅) = fn−t(S) is a global attractor. Consider
any state ∅ ⊊ T ′ ⊊ S: by monotonicity, it holds that T = f t(∅) ⊆ f t(T ′) and
fn−t(T ′) ⊆ fn−t(S) = T . We divide two cases.
Case (i): t ≤ n− t. Since T ⊆ f t(T ′), then it holds fn−2t(T ) ⊆ fn−2t+t(T ′) ⇒
T ⊆ fn−t(T ′) ⊆ T , and therefore T ′ reaches T in at most n− t steps.
Case (ii): t > n − t. Since T ⊇ fn−t(T ′), then f2t−n(T ) ⊇ f2t−n+n−t(T ′) ⇒
T ⊇ f t(T ′) ⊇ T , therefore T ′ reaches T in at most t steps.

Proposition 3 thus immediately gives a criterion for deciding the existence of
a global fixed-point attractor for monotone functions.

Corollary 4. Given S a finite set of n elements, and f : 2S → 2S monotone,
there exists a global fixed-point attractor if and only if f t(∅) = fn−t(S) for some
0 ≤ t ≤ n.

Proposition 3 and Corollary 4 can be directly applied to inhibitorless reaction
systems, whose result functions are always monotone. We obtain the following
results.

Corollary 5. Given a RS A = (S,A) ∈ RS(∞, 0) and a state T ⊆ S, deciding if
T is a global fixed-point attractor of A is in P.

Proof. Since resA is monotone [20], we can apply Proposition 3. Therefore, T is
a global attractor for A if and only if restA(∅) = T = resn−t

A (S) where t and n are
the cardinalities of T and S, respectively. For any state U ⊆ S, resA(U) can be
computed in polynomial time: it suffices to check which reactions are enabled in U
by intersecting their reactants and inhibitors with U , and then take the union of
the products of the enabled functions. To decide if T is a global attractor we only
need to evaluate resA at most |S| times, thus the problem is in P.

Corollary 6. Given a RS A = (S,A) ∈ RS(∞, 0) and a state T ⊆ S, deciding
on the existence of a global fixed-point attractor for A is in P.
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Proof. Since resA is monotone [20], we can apply Corollary 4. Therefore, there
exists a global attractor for A if and only if restA(∅) = resn−t

A (S) for some 0 ≤ t ≤
n where n is the cardinality of S. We conclude as in Corollary 5.

3.2 Existence of a global cycle attractor

We begin this section with a result that immediately follows from the Knaster-
Tarki theorem [27] and excludes the existence of a global cycle attractor of length
greater than one in the case of monotone functions. In particular, this implies that
no global cycle attractor of length k ≥ 2 can exist in the dynamics of inhibitorless
reaction systems, as their result function is always monotone [20].

Lemma 7. Let f : 2S → 2S be a monotone function. Then no global attractor
k-cycle exists for any k ≥ 2. Moreover, if U is a global attractor invariant set, then
at least one of the cycles in U is a fixed point.

Proof. By the Knaster-Tarki theorem, monotone functions always have a fixed
point, therefore a global attractor k-cycle cannot exist for k > 1 by Obsservation 2.
For the same reason, if U is a global attractor invariant set, then at least one of
the cycles in U is a fixed point.

The rest of this section provides results on the existence of global attractors
consisting of two fixed points for monotone functions (thus for inhibitorless reaction
systems). These results will be useful in Section 4 to prove the complexity of
deciding on the existence of global cycle attractors in reactantless systems. In
Lemma 8, we prove that for any monotone function, a global attractor consisting
of two fixed points must have a particular form.

Lemma 8. Let f : 2S → 2S monotone and U = {T1, T2} a global attractor
consisting of two fixed points, then U = {fn(∅), fm(S)}, with n,m ≥ 0 such that
fn(∅) = fn+1(∅) and fm(S) = fm+1(S).

Proof. By monotonicity, fn(∅) ⊆ Ti ⊆ fm(S) for i = 1, 2. Suppose for a contra-
diction that the inclusions are both strict: then U would not be a global attractor
by Observation 2, a contradiction. We obtain the statement.

Lemma 8 implies that any global attractor consisting of two fixed points in a
reaction system A ∈ RS(∞, 0) must be of the form {resnA(∅), resmA (S)}. However,
this characterization is not strong enough to give a polynomial time algorithm, and
in Proposition 9 we prove that deciding if resnA(∅) and resmA (S) are the only fixed
points for A is coNP-complete. The proof extends an idea from [24, Theorem 25].

Proposition 9. Given A = (S,A) ∈ RS(∞, 0) such that ∅ and S are fixed points,
it is coNP-complete to decide if ∅ and S are the only fixed points.

Proof. The problem lies in coNP because there exists a simple non-deterministic
algorithm which guesses a state T and then verifies in polynomial time that it
is a fixed point different from ∅ and S. To show coNP-completeness, we reduce
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validity [28] to this problem. Given a Boolean formula φ = φ1∨· · ·∨φm in DNF
over the variables V = {x1, . . . , xn}, let V := {xj : xj ∈ V } and ♡S := {♡i : 1 ≤
i ≤ n}. We define pos(φr) ⊆ V the set of variables that occur non-negated in φr

and neg(φr) ⊆ V the set of variables that occur negated in φr. We then define a
RS A with background set S := V ∪ V ∪ ♡S ∪ {♢} and reactions

(neg(φj) ∪ pos(φj) ∪ ♡S ,∅, {♢}) for 1 ≤ j ≤ m (1)

({xi} ∪ ♡S ,∅, {♡i, xi}) for 1 ≤ i ≤ n (2)

({xi} ∪ ♡S ,∅, {♡i, xi}) for 1 ≤ i ≤ n (3)

({xi, xi} ∪ ♡S ,∅, {♢}) for 1 ≤ i ≤ n (4)

({♢} ∪ ♡S ,∅, S). (5)

Note that ∅ and S are fixed points; furthermore, any T ⊆ S, it falls in one of the
following cases:

1) ♡S ⊈ T . In this case, resA(T ) = ∅, since no reaction is enabled;
2) ♢ ∈ T and ♡S ⊆ T . In this case, reaction (5) is enabled and thus resA(T ) = S;
3) T is of the form Y ∪ ♡S, with Y ⊆ V ∪ V .

Thus ∅ is reached from any state that does not fully contain ♡S, and S from any
state containing both ♡S and ♢. Let us now focus on the states falling in case (3).
For any Y ⊆ V ∪V , we define ♡Y := {♡i : xi ∈ Y ∨ xi ∈ Y } ⊆ ♡S. The following
subcases can happen:

3.1) ∃ i such that both xi, xi ∈ Y . In this case, the i-th reaction of group (4) is
enabled by Y ∪ ♡S, thus ♢ ∈ resA(Y ∪ ♡S); if ♡S ⊆ resA(Y ∪ ♡S) or ♡S ⊈
resA(Y ∪ ♡S), then resA(Y ∪ ♡S) is either in case (1) or (2) above, implying
that res2A(Y ∪ ♡S) ∈ {S,∅};

3.2) ∃ i such that both xi, xi /∈ Y . Then ♡S ⊈ resA(Y ∪ ♡S) since none of the i-th
reactions in groups (2), (3) are enabled, therefore res2(Y ∪ ♡S) = ∅.

3.3) xi ∈ Y ⇔ xi /∈ Y for every 1 ≤ i ≤ n. In this case, Y = X ∪ V \X for
some X ⊆ V , thus it encodes an assignment for φ where the variables in X
are assigned true value and the variables in V \ X are assigned value false.
Note that being φ in DNF, it is satisfied if and only if at least one φi is
satisfied; moreover, any clause φi, being a conjunction of variables, is satisfied
if and only if all of its negated variables are assigned value false and all of
its non-negated variables are assigned value true. Therefore, the assignment
implied by X ∪ V \X satisfies φ if and only if X ∪ V \X ∪ ♡S enables one
of the reactions from the group (1). Hence, if Y = X ∪ V \X satisfies φ then
♢ ∈ res(Y ∪ ♡S), implying res2(Y ∪ ♡S) = S. If instead Y does not satisfy φ
then res(Y ∪ ♡S) = Y ∪ ♡S by reactions of groups (2) and (3).

We conclude that A has no fixed points other than ∅ and S if and only if all the
assignments satisfy φ, ie φ is a tautology. Since the mapping φ 7→ A is computable
in polynomial time, the problem is coNP-hard.
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Since a necessary condition for U = {∅, S} to be a global attractor is that ∅
and S are the only two fixed points, Proposition 9 has the following immediate
corollary.

Corollary 10. Given A = (S,A) ∈ RS(∞, 0) such that ∅ and S are fixed points,
it is coNP-hard to decide if U = {∅, S} is a global attractor.

4 Global Attractors of Reactantless RS

4.1 Existence of a global fixed-point attractor

We begin this section with a characterization of global fixed-point attractors when
the function is antitone. Corollary 12, analogously to Corollary 4 for the monotone
case, will then provide a criterion for deciding the existence of a global fixed-point
attractor for antitone functions in polynomial time.

Proposition 11. Let S be a finite set, f : 2S → 2S antitone and T a fixed point
for f . Then, T is global fixed-point attractor for f if and only if T is a global
fixed-point attractor for f2.

Proof. ⇒ Since T is a fixed point for f , it is also a fixed point for f2. We need to
prove that T is a global attractor for f2, but since for every state T ′ ⊆ S there
exists t ∈ N such that f t(T ′) = T , then (f2)t(T ′) = f2t(T ′) = f2(T ) = T .

⇐ Consider T a global fixed-point attractor for f2. Then it must hold that f(T ) =
T , as otherwise, f(T ) ̸= T would imply that f2(f(T )) = f(T ) and thus f(T )
would be a fixed point for f2 different from T , which is a contradiction by
Observation 2. f(T ) = T implies that T is also a global fixed-point attractor
for f , because for every T ′ ⊆ S, T ′ reaches T in t steps through f2, thus T ′

reaches T in 2t steps through f .

Corollary 12. Given S a finite set and f : 2S → 2S antitone, a global fixed-point
attractor for f exists if and only if there exists a global fixed-point attractor for f2.

Proposition 11 and Corollary 12 can be straightforwardly applied to result
functions of reactantless reaction systems, leading to the following two results.

Corollary 13. Given a RS A = (S,A) ∈ RS(0,∞) and a state T ⊆ S, deciding
if T is a global fixed-point attractor of A is in P.

Proof. Since resA is antitone [20], Proposition 11 applies. Therefore, T is a global
attractor for A if and only if T is a global fixed-point attractor for res2A. Since res2A
is monotone, we can proceed as in the proof of Corollary 5, and decide whether T
is a global attractor simply by evaluating resA at most 2|S| times.

Corollary 14. Given a RS A = (S,A) ∈ RS(0,∞) and a state T ⊆ S, deciding
whether there exists a global fixed-point attractor of A is in P.

Proof. Since resA is antitone [20], Corollary 12 applies, implying that there exists
a global fixed-point attractor for resA if and only if there exists a global fixed-point
attractor for res2A. We conclude as in Corollary 13.
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{b} {a}

∅ {a, b}

(a) A global 2-cycle attractor.

{b} {a}

∅ {a, b}

(b) A global attractor consisting of two
fixed points.

Fig. 1: Representation of the dynamics of Example 16.

4.2 Existence of a global cycle attractor

We begin this section by showing, in Proposition 15, that a global k-cycle attractor
cannot exist for any antitone function for any k > 2: see also Example 16.

Proposition 15. Let U be a global cycle attractor for an antitone function f :
2S → 2S, then there exists T ⊆ S such that either U = {T} or U = {T, f(T )}.
Proof. Let f2(U) := {f2(U) : U ∈ U}; this is a global attractor invariant set for f2.
Suppose U is a (2k+1)-cycle for some k ≥ 0: then f2(U) is also a (2k+1)-cycle.
Since by Lemma 7 every global attractor invariant set for a monotone function
must contain a fixed point, and since f being antitone implies f2 being monotone,
it must be k = 0 and thus U = f2(U) = {T} must be a global fixed-point attractor
for f2. Suppose now U is a (2k)-cycle for some k ≥ 1: then f2(U) consists two
k-cycles. Since one of the two cycles must be a fixed point by Lemma 7, it must be
k = 1 and thus U = {T, f(T )} for some T ⊆ S.

Example 16. Let S = {a, b} and f : 2S → 2S given by:

f(∅) = {a, b}; f({a}) = ∅; f({b}) = {a}; f({a, b}) = ∅.

f is clearly antitone and in the dynamics, we have a global 2-cycle attractor {∅, S}:
see Figure 1a. Consider now f2 : 2S → 2S , given by

f2(∅) = ∅; f2({a}) = {a, b}; f2({b}) = ∅; f2({a, b}) = {a, b}.

f2 has a global attractor consisting of two fixed points, see Figure 1b. ⌟

From the proof of Proposition 15, we deduce that an antitone function f :
2S → 2S has a global 2-cycle attractor if and only if f2 : 2S → 2S has a global
attractor consisting of two fixed points.

The rest of this section is devoted to proving that deciding whether a reac-
tantless RS has a 2-cycle global attractor reduces to the problem of Corollary 10
for inhibitorless systems, and it is, therefore, coNP-hard as well. We begin with
an example that illustrates the workings of the reduction we will later provide in
Theorem 18.

Example 17. Let S = {a, b} and A = (S,A) an inhibitorless reaction system
where A = {({a},∅, {a, b})}. As already seen in Example 16, in the dynamics of
A there are two fixed points that form together a global attractor (same dynamics
as Figure 1b):
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{b} {a}

∅ {a, b}

We want to construct a reactantless reaction system that can reproduce the dy-
namics of A for states ∅ ⊊ T ⊊ S and transform the global attractor of A,
consisting of two fixed points, into a 2-cycle global attractor. We thus construct
B = (S′, B) where S′ = {a, b,♡,♠} and B is given by the following reactions:

(∅, {a,♡}, {a,♡})
(∅, {b,♡}, {b,♡})
(∅, {a,♠}, {a, b,♠})
(∅, {a, b,♡}, {a, b,♡,♠})
(∅, {a, b,♠}, {a, b,♡,♠})
(∅, {♡,♠}, {a, b,♡,♠}).

It is straightforward to verify that resB({b,♠}) = {a,♡} and resB({a,♠}) =
{b,♡}, thus

res2B({b,♠}) = ∅ and res2B({a,♠}) = {a, b,♠}.

Note that in the original inhibitorless RSA we have resA({b}) = ∅ and resA({a}) =
{a, b}, thus B can reproduce the dynamics ofA in two steps starting from the states
{a,♠} and {b,♠} and going through the states the states {a,♡} and {b,♡}. The
last three reactions of B ensure that there is a 2-cycle global attractor, as all the
states except for {a,♠}, {b,♠}, and {b,♡} reach the 2-cycle {∅, S′} in one step,
which makes it a global 2-cycle attractor. The dynamics of B is the following:

{b,♠} {a,♡} {♡}

{a,♠} {b,♡} {a, b,♠} {♠}

{a, b,♡} ∅ {a, b,♡,♠} {a, b}

{a,♡,♠} {b}

{b,♡,♠} {♡,♠} {a}

In Theorem 18, we extend and generalize the construction of Example 17 to
any A ∈ RS(∞, 0) to reduce the problem of deciding whether U = {∅, S} is a
global attractor in inhibitorless reaction systems to the problem of deciding the
existence of a global 2-cycle attractor in reactantless reaction systems.

Theorem 18. Given A = (S,A) ∈ RS(0,∞), deciding if there exists a 2-cycle
global attractor is coNP-hard.



Global Attractors of Reactantless and Inhibitorless Reaction Systems 11

Proof. We reduce from the problem of deciding if U = {∅, S} is a global attractor
in inhibitorless reaction systems (see Corollary 10). More precisely, given A =
(S,A) ∈ RS(∞, 0) such that ∅ and S are fixed points, we want to construct in
polynomial time a reaction system B ∈ RS(0,∞) such that {∅, S} is a global
attractor for A if and only if there exists a 2-cycle global attractor for B. We
construct a reactantless RS B := (S′, B), with S′ := S ∪ {♡,♠} and B is given by
the following reactions:

(∅, {s,♡}, {s,♡}) for s ∈ S (6)

(∅, Ra ∪ {♠}, Pa ∪ {♠}) for a = (Ra,∅, Pa) ∈ A (7)

(∅, S ∪ {♡}, S ∪ {♡,♠}) (8)

(∅, S ∪ {♠}, S ∪ {♡,♠}) (9)

(∅, {♡,♠}, S ∪ {♡,♠}). (10)

Claim. All states of B of the forms {♠}, {♡}, S ∪ {♡}, S ∪ {♠}, T , and T ∪
{♡,♠}, for all T ⊆ S, reach {∅, S′} in one step. Furthermore, resB(∅) = S′ and
resB(S

′) = ∅.

Proof. We immediately note that for any T ⊆ S we have resB(T ) = S∪{♡,♠} = S′

since reaction (10) is enabled, and resB(T ∪ {♡,♠}) = ∅ since no reaction is
enabled. By reactions (8) and (9), we also have resB({♠}) = resB({♡}) = S ∪
{♡,♠} = S′. Furthermore, since resA(∅) = ∅, then Ra ̸= ∅ for each a ∈ A, thus
resB(S ∪ {♡}) = ∅ since no reaction is enabled, as well as resB(S ∪ {♠}) = ∅.
Finally, since all the reactions are enabled by ∅, and no reaction is enabled by
S′ = S ∪ {♡,♠}, we have that resB(∅) = S′ and resB(S

′) = ∅. See also Figure 2
for a visual representation of the dynamics.

Claim. The states {♠}, {♡}, {♡,♠}, S, S ∪ {♡}, T , and T ∪ {♡,♠}, for all
∅ ⊊ T ⊊ S, cannot be reached from any states.

Proof. We can safely assume that in A there are no reactions of the type (Ra,∅,∅),
because in any case, they do not affect the dynamic of A. Therefore enA(T ) = ∅
if and only if resA(T ) = ∅. This implies that group (7) of the reactions of B does
not contain any reactions of the form (∅, Ra ∪ {♠}, {♠}), implying that the state
{♠} cannot be reached from any state. With a similar reasoning we deduce that
the states {♡}, {♡,♠}, S, and T for all ∅ ⊊ T ⊊ S cannot be reached from any
state as well.

Furthermore, none of the states of the form T ∪ {♡,♠} with ∅ ⊊ T ⊊ S can
be reached from any state: indeed, suppose for a contradiction that resB(T

′) =
T ∪ {♡,♠} for some T ′ ⊆ S′ and ∅ ⊊ T ⊊ S. In order to obtain ♡ in the
product, T ′ must enable some reactions from group (6); and to obtain ♠, it must
also enable reactions from group (7). This implies ♡,♠ /∈ T ′, thus T ′ ⊆ S and
thus, by Claim 18, resB(T

′) = S ∪ {♡,♠}, which is a contradiction because by
hypothesis T ⊊ S. Finally, S ∪ {♡} cannot be reached from any state U because
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T ∪ {♠}

S ∪ {♠} (S \ T ) ∪ {♡} {♡}

S ∪ {♡} {♠}

∅ S ∪ {♡,♠}

{♡,♠} S

T ∪ {♡,♠} T

resA

resA

resA

Fig. 2: Dynamics of the RS B in the reduction of Theorem 18. The states T ,
T ∪{♡,♠}, T ∪{♠} and (S \T )∪{♡} are a synthetic representation of the 2S −2
states (one fore each ∅ ⊊ T ⊊ S) of each type. The boxes around states T ∪ {♠}
and (S \ T ) ∪ {♡} hide the more refined dynamics for those states; dashed arcs
represent the three existing possibilities for the dynamics of the states belonging
to the boxes, as described after Claim 18.

this would require all and only the reactions from group (6) to be enabled in U ,
which can happen only if U = {♠}; but then reaction (8) is enabled as well, and
indeed resB({♠}) = S′ by Claim 18.

It remains to determine the dynamics for the states of the form T ∪ {♠} and
T ∪ {♡} for some ∅ ⊊ T ⊊ S. Because of the reactions from group (6), we obtain

resB(T ∪ {♠}) = (S \ T ) ∪ {♡}; (11)

and because of the reactions from group (7), in turn we have

resB((S \ T ) ∪ {♡}) =

{
resA(T ) ∪ {♠} if enA(T ) ̸= ∅
∅ otherwise,

(12)

since (S \T )∪{♡} enables (∅, Ra∪{♠}, Pa∪{♠}) if and only if (S \T )∩Ra = ∅,
which is the case if and only if Ra ⊆ T and thus T enables (Ra,∅, Pa) in A. As
remarked in Claim 18, we have that resA(T ) = ∅ if and only if enA(T ) = ∅, which
is true if and only if resB((S \ T ) ∪ {♡}) = ∅. We have obtained the following
formula:

res2B(T ∪ {♠}) =

{
resA(T ) ∪ {♠} if enA(T ) ̸= ∅
∅ otherwise.

(13)
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Therefore, iterating (13), if resiA(T ) /∈ {∅, S} for all i = 1, . . . , k, we obtain

res2kB (T ∪ {♠}) = reskA(T ) ∪ {♠} . (14)

Note that the states of the form T ∪ {♡} with ∅ ⊊ T ⊊ S coincide with the
states of the form (S \ T ) ∪ {♡}; in particular, any such state T ∪ {♡} is reached
from (S \ T ) ∪ {♠} by Equation (11), and reaches either ∅ or resA(S \ T ) ∪ {♠}
according to Equation (12). In Figure 2, the states of the form T ∪{♡} and T ∪{♠}
are compactly represented as boxed states, and their dynamics are not completely
represented for the sake of readability.

We observe that the only candidate 2-cycle global attractor for B is {∅, S′}, as
it is a 2-cycle by Claim 18 and it is the only candidate global attractor by Claim 18
and the discussion below its proof. The next claim gives us the thesis.

Claim. {∅, S} is a global attractor for A if and only if {∅, S′} is a global attractor
for B.

Proof. ⇒ Let ∅ ⊊ T ⊊ S: in this case, we already proved in Claim 18 that T
and T ∪ {♡,♠} reach {∅, S′} in one step. By hypothesis, ∃k ∈ N such that
reskA(T ) ∈ {∅, S}. Let k be the minimum number that satisfies this property,
implying that resiA(T ) /∈ {∅, S} for i = 1, . . . , k − 1. Thus we can apply Equa-
tion (14) and obtain

res
2(k−1)
B (T ∪ {♠}) = resk−1

A (T ) ∪ {♠}

Furthermore, applying Equation (11) to this result, we obtain

res
2(k−1)+1
B (T ∪ {♠}) = res2k−1

B (T ∪ {♠}) = S \ resk−1
A (T ) ∪ {♡}.

Since by hypothesis reskA(T ) ∈ {∅, S}, there are two cases: if reskA(T ) = S, then
res2kB (T ∪ {♠}) = S ∪ {♠}, implying that res2k+1

B (T ∪ {♠}) = ∅. Otherwise,

reskA(T ) = ∅, which happens if and only if enA(res
k−1
A (T )) = ∅: in this case,

res2kB (T ∪ {♠}) = ∅ by Equation (13). In any case, T ∪ {♠} reaches {∅, S′}
in at most 2k + 1 steps. For the state T ∪ {♡}, we can reduce to the previous
case using Equation (12). Together with Claim 18, we obtain that if {∅, S} is
a global attractor for A then {∅, S′} is a global attractor for B.

⇐ Let ∅ ⊊ T ⊊ S: by hypothesis, there exists k ∈ N such that reskB(T ∪ {♠}) ∈
{∅, S′}. Let k be the minimum number that satisfies that property. We want
to prove that T is always attracted by {S,∅}. We define two cases, depending
on whether k is even or odd.
1) k = 2m. We have resiA(T ) /∈ {∅, S} for all i = 1, . . . ,m − 1 as otherwise

k = 2m would not be the minimum. Thus we get res2m−1
B (T ∪ {♠}) =

(S \ resm−1
A (T )) ∪ {♡}. Since ∅ ⊊ resm−1

A (T ) ⊊ S, we have ∅ ⊊ S \
resm−1

A (T ) ⊊ S, thus reaction (9) is not enabled by (S \ resm−1
A (T ))∪{♡},

implying in turn that ♡ /∈ res2mB (T ∪ {♠}), and thus res2mB (T ∪ {♠}) ̸=
S ∪ {♡,♠}. But since res2mB (T ) ∈ {∅, S′} then res2mB (T ) = ∅. Suppose
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now for a contradiction that resmA (T ) ̸= ∅: then it would also be res2mB (T ∪
{♠}) = resB((S \ resm−1

A (T ))∪{♡}) ̸= ∅, a contradiction. We deduce that
resmA (T ) = ∅, thus T is attracted by {S,∅}.

2) k = 2m+1. Clearly, resiA(T ) /∈ {∅, S} for i = 1, . . . ,m− 1. Thus we have
res2m−1

B (T ∪ {♠}) = (S \ resm−1
A (T )) ∪ {♡}. Since res2mB (T ∪ {♠}) ̸= ∅

then resmA (T ) ̸= ∅. Thus res2mB (T ∪ {♠}) = resmA (T ) ∪ {♠}. Suppose for a
contradiction that resmA (T ) ⊊ S, then res2m+1

B (T ∪ {♠}) = S \ resmA (T ) ∪
{♡} /∈ {∅, S′}, a contradiction by the definition of k. We deduce that
resmA (T ) = S, thus T is attracted by {S,∅}.

Summing up, we proved that if {∅, S′} is a global attractor for B then {∅, S}
is a global attractor for A.

Claim 18, together with Claim 18, directly implies that there exists 2-cycle global
attractor for B if and only if {∅, S} is a global attractor for A. We also remark that
the map A 7→ B can be constructed in polynomial time. By Corollary 10, deciding
whether {∅, S} is a global attractor is coNP-hard, thus the thesis follows.
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Summary. In this paper, computational models that are variants of membrane systems
with synchronization of rules in the style of Aman and Ciobanu [1] are considered. We
examine membrane system like computational models in different execution modes and
with reusage and without reusage of objects in the same computational step. The weak
cases are the ones without restrictions on the compound rules. We show in one of the
cases that, as a computational model, it is strictly weaker than Turing machines when
maximally parallel execution mode is omitted. Furthermore, we prove that the strong
cases, when additional conditions are imposed on the compound rules, are computation-
ally complete even without maximal parallelism. Finally, we give a more or less intuitive
argument on why these computational systems with non-cooperative rules cannot be
computationally complete even in the strong modes. Keywords: Membrane systems,
Computational completeness, Rewriting systems

1 Introduction

Membrane systems, or P systems, are biologically inspired models of computation
introduced by Gh. Păun in [9]. The original model is based on a tree-like structure
of nested membranes. The computation proceeds separately in each region: the
membranes or regions have their associated multisets that evolve in accordance
with various rewriting rules specific to each membrane. In most of the cases, the
whole process is synchronized by a global clock: each membrane is waiting for the
other one to finish their computation before a new computational step begins.
Originally, the computation in each membrane follows a maximally parallel mode,
which means that a maximal multiset of rules is applied at the same time, that is,
in each membrane, a multiset of rules is executed simultaneously which is such that
no more rules could have been added to the multiset to maintain the simultaneous
execution property. Several variants of P systems and application modes have been
introduced and studied, we refer the interested reader to the monograph [10] for a
thorough introduction, or the handbook [11] for a summary of notions and results
of the area.
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In this paper, we consider variants of the symbol object P system with several
types of execution mode and forms of rules. Namely, besides the rules of the form
u → v, where u is the multiset to be replaced by the multiset v during a rule
application, we consider synchronized rules in the sense introduced by Aman and
Ciobanu [1, 2]. We pose the question of what is the computational power of these
rules when we consider them with various execution modes and semantics. One
of the execution modes is the unsynchronized or sequential one, where the rules
can be applied one after the other. The other one is the synchronized mode where
a (possibly empty) multiset of rules is executed simultaneously at the same time
in a specific membrane computational step in each compartment. We remove,
however, the requirement for the rule applications of being maximally parallel.
Observe that the unsynchronized mode can be considered as rule executions when
the newly obtained objects can be reused in the next computational step, while
the synchronized mode is such execution of rules where the newly obtained ob-
jects coming from the right hand sides of the rules can only be reused in the next
computational step. Regarding the semantics, we even distinguish two different
interpretations concerning the synchronized rules. We term them weak and strong
application modes. In total, we will talk about four different execution modes:
unsynchronized and synchronized modes with the weak or with the strong appli-
cation mode. It will turn out that the weak application modes are strictly weaker
than the strong ones, the latter ones being equivalent to the computational power
of the Turing machine model.

2 Preliminaries

2.1 Multisets

Let N and N>0 be the set of non-negative integers and the set of positive integers,
respectively, and let O be a finite nonempty set (the set of object). A multiset
M over O is a pair M = (O, f), where f : O → N is a mapping which gives the
multiplicity of each object a ∈ O. If f(a) = 0 for every a ∈ O, then M is the empty
multiset. If f(a) = n > 0, then a ∈ M , or a ∈n M .

Let M1 = (O, f1),M2 = (O, f2). Then (M1 ⊓ M2) = (O, f) where f(a) =
min{f1(a), f2(a)}; (M1 ⊔M2) = (O, f ′), where f ′(a) = max{f1(a), f2(a)}; (M1 ⊕
M2) = (O, f ′′), where f ′′(a) = f1(a)+f2(a); (M1⊖M2) = (O, f ′′′) where f ′′′(a) =
max{f1(a)− f2(a), 0}; and M1 ⊑ M2, if f1(a) ≤ f2(a) for all a ∈ O. We abbreviate
M ⊕M ⊕ . . .⊕M︸ ︷︷ ︸

k

as k ·M .

The number of copies of objects in a finite multiset M = (O, f) is its cardinality:
card(M) = Σ{a|f(a)>0}f(a). Such an M can be represented by any string w over
O for which |w| = card(M), and |w|a = f(a) where |w| denotes the length of the
string, and |w|a, or simply w(a), denotes the number of occurrences of the symbol
a in w.
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We define the MSn(O), n ∈ N, to be the set of all multisets M = (O, f) over
O such that f(a) ≤ n for all a ∈ O, and we let MS<∞(O) =

⋃
n≥0 MSn(O).

Moreover, if A is an arbitrary set, we define A≥k = ∪∞
n=kA

n, where A0 = ∅,
A1 = A and An = A× . . .×A︸ ︷︷ ︸

n

for n ≥ 2.

If O is a set of objects and u, v ∈ MS<∞(O), we call the (u, v) a rule over O.
In what follows, we write MS(O) in place of MS<∞(O) since we will exclusively
deal with finite multisets.

2.2 Symbol object P systems of degree 1

Since the concepts that we will study in the sequel are in compliance with the
construction of flattening of membrane systems [3], in the sequel, we restrict our
attention to membrane systems of degree 1. Below, we provide the definition of a
symbol object P system of degree 1.

A P system of degree 1 is a tuple Π = (O,w0, R) where O is an alphabet of
objects, w0 ∈ MS(O) is the initial content of the region, R is the set of (evolution)
rules associated with region 1. They are of the form u → v, where u, v ∈ MS(O).
We assume that the result of the computation is collected from membrane 1 in the
form of a multiset of certain terminal objects. A computation gives a result when
it comes to a halt. For a rule r = u → v ∈ Ri, we write lhs(r) for u and rhs(r) for
v. A configuration w is the actual multiset content of membrane 1.

2.3 P systems with synchronized rules

In this subsection we present the various versions of P systems with synchronized
rules. A P system with with rule synchronization, or P system with synchronized
rules, (of degree 1) is a tuple Π = (O,w0, (R, ρ)), where Π = (O,w0, R) is a P
system of degree 1 and ρ ⊆ R≥2. For any element (r1, r2, . . . , rk) of ρ, where ri ∈ R
(1 ≤ i ≤ k), we use the notation r = r1⊗r2⊗ . . .⊗rk and we call r a synchronized
rule, or a compound rule, and ri its components (1 ≤ i ≤ k). Let comp(r) denote
the set of components of r. We term r ∈ R a single rule if it is not a synchronized
one. In the sequel, we consider P systems with rule synchronization of degree 1.
We say that a rule r ∈ R is non-cooperative if it is of the form a → v for some
a ∈ O. Otherwise, r is said to be cooperative. Similarly, a rule ρ = r1 ⊗ . . .⊗ rk is
non-cooperative if each of r1, . . . , rk is of the form a → v for some object a ∈ O.

We clarify how rule execution can be understood in P systems Π = (O,w0, (R, ρ))
with rule synchronization. We distinguish two kinds of rule application modes-
weak and strong application modes-, and two possibilities for dealing with objects
appearing on the right hand side of rules: we can either allow reusing objects
created by a rule application or prohibit this in the same computational step.
The latter corresponds to the original interpretation in membrane computation.
In total, we deal with four possible ways to interpret P systems with synchro-
nized rules. Let w be a configuration of Π. In what follows, we describe how the
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next configuration w′ emerges from w. Let r ∈ R be a single rule or let r be
a component of a compound rule r′. Then we say that r is applicable in w if
lhs(r) ⊑ w. An application of a single rule involves the replacement of w with the
multiset w′ = w ⊖ lhs(r)⊕ rhs(r). The applicability and the result of application
of compound rules will be clarified in the respective execution modes.

Definition 1.

(W1)(Weak application mode with reusage of objects.) Reusage of objects means
there is no synchronization in the P system, the rules are applied in a sequential
manner. Let us clarify what application of a rule means in the specific cases. Let
r = u → v ∈ R. Then r is applicable if u ⊑ w. In this case, the result of applying
r to w is obtained by removing form w the objects of u and adding the objects of
v to w⊖u. Now, let r = r1⊗ r2⊗ . . .⊗ rn ∈ ρ, where ri = ui → vi (1 ≤ i ≤ n).
Then r is applicable iff all of its components are applicable as single rules. When
this is the case, an application of r consists of applications of the components of
r an arbitrary number of times provided all of them are applied at least once.
Moreover, an object emerging on the right hand side of a component can be
reused even if the execution step of r has not finished yet. More formally, let
r = r1⊗r2⊗ . . .⊗rn ∈ ρ. Then r is applicable if u1⊕ . . .⊕un ⊑ w. In this case,
the result of the application, w′, is obtained through a sequence of intermediate
configurations w1, w2, . . . , wk, where w = w1 →r′1 w2 →r′2 . . . →r′k−1 wk = w′

and wj+1 = wj ⊖ lhs(r′j) ⊕ rhs(r′j) (1 ≤ j ≤ k) and each of r1, . . . , rn occurs
in the sequence r′1, . . . , r

′
k at least once. We call the configurations w and w′

proper and the configurations w2, . . . , wk−1 intermediate ones. The transitions
wj →r′j wj+1 are small step transitions (1 ≤ j ≤ k − 1), while the transition
yielding w′ from w is a big step transition. In notation: w ⇒r

w,y w′.
(W2)(Weak application mode without reusage of objects.) In this case, a big step

comprises the simultaneous application of several single or compound rules in
the compartments. When all the membranes has finished working, only then
can the next computational step begin. The objects coming from the right hand
side of the rules can be used only in the next big computational step. Formally,
let R be a multiset over the set of rules R ∪ ρ. We define multisets, sub(R)
and add(R) over O. Firstly, let r = u → v ∈ R. Then sub(r) = lhs(r) = u
and add(r) = rhs(r) = v. On the other hand, if r = r1 ⊗ . . . ⊗ rn ∈ ρ, let
ri = ui → vi (1 ≤ i ≤ n). Then sub(r) =

⊕n
i=1 ki ·ui and add(r) =

⊕n
i=1 ki ·vi,

where ki ≥ 1 (1 ≤ i ≤ n). We write sub(R) =
⊕

{sub(r) | r ∈ R} and
add(R) =

⊕
{add(r) | r ∈ R} and we set w′ = (w ⊖ sub(R))⊕ add(R).

(S1)(Strong application mode with reusage of objects.) This application mode de-
mands that the application of rules, being either single or compound ones, takes
place in a sequential way. The only difference regarding application mode (W1)
is the different interpretation of the compound rules. Let r ∈ R be a single rule.
Then r is applicable if lhs(r) ⊑ w and, in this case, w′ = w ⊖ lhs(r)⊕ rhs(r).
On the other hand, let r = r1 ⊗ r2 ⊗ . . .⊗ rn ∈ ρ. Then r is applicable to w0 in
the strong sense if at least one of r’s components is applicable. When this holds,
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we apply r by searching from left to right the first applicable component r′. Af-
ter executing r′, we resume searching for an applicable component of r starting
from the first component. More formally, r is applicable if lhs(ri) ⊑ w0 for some
1 ≤ i ≤ n. Then an application of r is described by the following sequence of
intermediate configurations: w0 →r′1 w1 →r′2 w2 . . . →r′k wk = w′, where r′i is of
minimal index i among the components of r applicable to wi−1 (1 ≤ i ≤ k). No
component is applicable to w′ = wk. The transitions wi−1 →r′i wi (1 ≤ i ≤ k)
are called small steps regarding the application of r in the strong sense with
reusage of objects, while the process yielding w′ form w is called a big step. In
notation: w ⇒r

s,y w′. The configurations w and w′ are proper.
(S2)(Strong application mode without reusage of objects.) It differs the above mode

only in the treatment with the objects coming form the right hand side of the
components during an execution of a compound rule. In plain words, a com-
pound rule r is executed by searching for the first applicable component with
the smallest index. Then the component is executed as a single rule, i.e., we
subtract the multiset on the left hand side from the actual configuration and add
the multiset on the right hand to the result of the subtraction. Then we start
searching for the applicable component with the smallest index in the emerging
new multiset. This process stops until there are no more applicable components.
More precisely, let r ∈ R. Then let the result of the transition w ⇒r

s,n w′ be the
multiset w′ = w⊖ lhs(r)⊕ rhs(r). Suppose r ∈ ρ. Then we define the multisets
lhs(r), rhs(r) by giving three sequences of multisets u0, u1, . . ., v0, v1, . . . and
w0, w1, . . . simultaneously. Let u0 = ε, the empty multiset, and let v0 = w0 = w.
Assume ui, wi, vi are already defined for some i ∈ N. Let r′ be the component
of r that is the first one from left to right which is applicable to wi. Then
ui+1 = ui ⊕ lhs(r′) and wi+1 = w ⊖ ui+1, vi+1 = vi ⊕ rhs(r′). We continue
if at least one component of r is applicable, that is, we calculate the i + 2-th
elements of the sequences if lhs(r′′) ⊑ wi+1 for some r′′ ∈ comp(r). Let m
be the first index for which this is not case. Then we denote lhs(r) = um and
rhs(r) = vm. We have w′ = w ⊖ lhs(r)⊕ rhs(r), and we write w ⇒r

s,n w′.

Let us illustrate the definition by demonstrating the operation of a P system
with synchronization of rules in the strong application mode with reusage of objects
(S2).

Example 1. Let Π = (O,w0, (R, ρ)) be a P system with synchronization of rules,
where n = 1, O = {a, b, d, e}, w0 = anbm, and R = {r1 = adm → embm, r2 =
ab → da, r3 = b → ε}. Let ρ = {r = r1 ⊗ r2 ⊗ r3}. Let us consider a terminating
computation starting from w0 = anbm in mode (S2). We assume n,m ≥ 1. Let the
subscripts of the arrows denote the components of r applied.

anbm →∗
r2 andm →r1 an−1embm →r2

an−1embm−1d →∗
r2 an−1emdm →r1 an−1e2mbm →r2

. . .

ae(n−1)mbm−1d →∗
r2 ae(n−1)mdm →r1 enmbm →∗

r3 enm
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In what follows, let w stand for the actual configuration of our membrane. In the
example above, when the multiset w contains less than m d’s, then the successive
applications of the component r2 remove one copy of b and add a d to w. The new
copies of d add to the configuration. In the case when dm ⊑ w, r1 is applicable and,
hence, it must be applied. This means an erasure of one copy of a and introducing
em and bm to w. The computation proceeds in this way until all the a’s are
consumed. At this point, w = enmbm. Now only r3 can be applied, which yields
the removal of bm from w.

3 The power of synchronized rules in P systems

We turn to a brief discussion of the computational power of synchronization of
rules in P systems with respect to the above application modes. We treat first
the case of weak application modes. In this section, we present some results and
provide their short justifications or we give hints on how they can be achieved.

3.1 Synchronized rules with the weak application mode

In this subsection we examine P systems with synchronization of rules using the
weak application mode. It turns out that P systems with application mode (W1)
are not computationally complete, and we formulate a conjecture for a similar
statement on P systems with application mode (W2). In the case of application
mode (W1), that is, the weak application mode with reusage of objects, we show
that compound rules can be substituted for ordinary rules of a P system such that
the multisets computed by the two P systems will be the same.

Proposition 1. Let Π = (O,w0, (R, ρ)) be a P system of degree 1 with synchro-
nization of rules using execution mode (W1). Then there exists a P system Π ′ of
degree 1 without synchronization of rules applying the sequential mode such that
Π ′ and Π compute the same sets of vectors.

Proof. Let Π = (O,w0, (R, ρ)) be as above. Let us define Π ′ in the following way.
Let us add to O a finite set of new objects as described below:

O′ = O ∪ {ω, κ, ϑr
1, . . . , ϑ

r
kr

| r = r1 ⊗ . . .⊗ rkr
∈ ρ}.

Let w′
0 = w0⊔{ω, ϑr

1 | r ∈ ρ}. We obtain R′ as follows. Firstly, we add the following
single rules to R for any r = r1 ⊗ . . . ⊗ rk ∈ ρ. Let ri = ui → vi (1 ≤ i ≤ k). We
define the rules:
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r′1 = ωu1ϑ
r
1 → κv1ϑ

r
1,

r′′1 = κu1ϑ
r
1 → κv1ϑ

r
2,

r′2 = κu2ϑ
r
2 → κv2ϑ

r
2,

r′′2 = κu2ϑ
r
2 → κv2ϑ

r
3,

. . .

r′k = κukϑ
r
k → κvkϑ

r
k,

r′′k = κukϑ
r
k → ωvkϑ

r
1.

We add the rule κ → κ to R′. Moreover, if r = u → v ∈ R, then we let
r′ = ωu → ωv ∈ R′. It is easy to check that Π ′ = (O′, w′

0, R
′) produces the same

set of multisets as Π. □

Regarding the case of (W2), i.e., weak application mode without reusage of
objects we believe that the computational power is strictly weaker than that of
Turing machines. We assert this as a conjecture. We think that a P system with
application mode (W2) can be simulated with a forbidding context grammar with
λ-rules.

Conjecture 1. Let Π = (O,w0, (R, ρ)) be a P system of degree 1 with synchro-
nization of rules applying execution mode (W2). Then there exists a forbidding
context grammar GΠ with λ-rules such that Ps(Π) = Ps(GΠ).

3.2 Synchronized rules with the strong application mode

Now we continue with our investigation with synchronization of rules in the strong
application mode. We demonstrate that generalized P systems with synchronized
rules in the strong application mode can compute any Turing computable, or in,
other words, partial recursive function. To this end, we simulate register machines
with zero-test subtraction with P systems applied with the strong application
mode. We recall briefly the definition of such register machines.

A register machine is a tuple W = (m,H, l0, lh, Inst), where m is the number
of registers, H is the set of instruction labels, l0 is the start label, lh is the halting
label, and Inst is the set of instructions. There is a bijection between the labels of
H and the instruction of Inst. The following types of instructions can be used. For
li, lj , lk ∈ H and r ∈ {1, . . . ,m} we have:

• li : (ADD(r), lj , lk) - nondeterministic add: Add 1 to register r and then go to
one of the instructions with labels lj or lk, nondeterministically chosen.

• li : (SUB(r), lj , lk) - zero check and subtract: If register r is empty, then go to
the instruction with label lj , if r is non-empty, then subtract one from it and
go to the instruction with label lk.

• lh : HALT - halt: Stop the machine.

A computation of a register machine starts with all registers empty except for
some designated input registers. The control flow is regulated by the labels shown
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in the actual instruction of the machine. The machine starts with the instruction
labeled l0. If the machine reaches the halt instruction lh : HALT, then it stops, and
the number stored in the first register, or in the output registers fixed in advance, is
the result of the computation. Note that our register machine is a nondeterministic
computing device. In this case, it is suitable for computing sets of natural numbers
when we consider the outcomes of the various computations.

We consider the two computation modes, (S1) and (S2), separately. Firstly, we
deal with (S1), that is, strong computation mode with reusage of objects.

Theorem 1. Generalized P systems with synchronized rules in the strong appli-
cation mode with reusage of objects can simulate arbitrary register machines with
zero-test subtractions, even without using the maximally parallel rule execution. We
may even assume that the P system is a purely catalyctic one with a three-state
catalyst.

Proof. Let W = (m,H, l0, lh, Inst) be a register machine. Fpr the sake of simplic-
ity, we assume that W has one output register, let this be register 1, W computes
a number instead of a vector, and, in addition, W starts its computation with all
registers initially empty. We construct a P system Π of degree 1 with synchroniza-
tion of rules using execution mode (S1) such that, at every computational step,
the number stored in register i of W is represented by the number of the object
ai in the only region of Π and, upon halting, Π provides the result by producing
the same number of copies of object a1 as the number stored in register R1 of W .

We define Π as a purely catalyctic P system with a three-state catalyst. We
have to take care that the execution mode allows us reusing elements created during
a rule application, in contrast with common practice in membrane systems. Let
Π = (O,w0, (R, ρ)), where

O = {l | l ∈ H} ∪ {ar | 1 ≤ r ≤ m} ∪ {c, c′, c′′},
w0 = l0c,

R = RAdd ∪RSub ∪RHalt,

where
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RAdd = {r(i,1) = cli → cljar, r(i,2) = cli → clkar,

r′′(i,1) = c′′li → c′′ljar, r
′′
(i,2) = c′′li → c′′lkar | for all

li : (ADD(r), lj , lk) ∈ Inst},

RSub = {ro(i,1) = car → c′, ro(i,2) = c′li → c′′lj , r
o
(i,3) = cli → c′′lk,

re(i,1) = c′′ar → c′, re(i,2) = c′li → clj , r
e
(i,3) = c′′li → clk

| for all li : (SUB(r), lj , lk) ∈ Inst},

RHalt = {clh → c, c′′lh → c′′},

ρ = {ρoi = ro(i,1) ⊗ ro(i,2) ⊗ ro(i,3), ρ
e
i = re(i,1) ⊗ re(i,2) ⊗ re(i,3) | li : (SUB(r), lj , lk)}.

We give a brief explanation of how Π simulates a computation of W . The
initial configuration corresponds to the initial configuration of W , since the first
region contains l0, the label of the starting instruction, and W commences its
operation with the assumption that all registers are initially empty. The label of
the next instruction, together with copies of the objects ar (1 ≤ r ≤ m), are to
be found in membrane 1, the only membrane of Π. There are two sets of rules
with respect to the SUB instruction: they correspond to the odd and even turns
of the applications of SUB. When in the instruction sequence the SUB has been
called an even number of times, the next execution will be governed by a ρ-rule
with superscript ”o”. Otherwise, it is the turn of the ρ-rules with superscript ”e”.
This will be detailed below. We describe the next step of the simulation process by
taking into account the different cases. Let conf denote the actual configuration
of Π, that is, the content of membrane 1.

• li : (ADD(r), lj , lk). The applications of the corresponding rules of Π introduce
the label representing the next instruction of W in Π, adding one copy of ar to
conf at the same time. We distinguish the different cases regarding the actual
number of SUB instructions applied before calling instruction li.

• li : (SUB(r), lj , lk). Assume an even number of SUB has already been applied
and it is the turn of the instruction li. Then c ∈ conf , and the rule ρoi is
executed. If ar ∈ conf , then the object c′ is introduced and, in the next step,
li is transformed to lk and c′ is exchanged with c′′. At this point, the operation
of ρoi halts and the simulation of the instruction labelled lk can commence.
If ar /∈ conf , then ro(i,1) cannot be applied, instead, a copy of c′′ and lk is
introduced using ro(i,3). If li emerges as an even turn of an application of SUBs,
then c′′ ∈ conf and a process similar to the above one can be executed.

• lh : HALT. Then lh is removed and the computation of Π comes to a halt.

Obviously, the P system Π halts if and only if the register machine W halts
and, at this point, the number of copies of the object a1 and the number stored in
the first register of W are the same. □
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We formulate a similar statement asserting the possibility of simulation register
machines with P systems in application mode (S2). In this case, it is enough to
consider a purely catalyctic P system with bistable catalyst for the simulation.
Since the proof is very much like in the case of application mode (S1), we just
state the result without proof.

Theorem 2. Generalized P systems with synchronized rules in the strong appli-
cation mode without reusage of objects (S2) can simulate, without using the max-
imally parallel rule execution, arbitrary register machines with zero-test subtrac-
tions, even when we consider purely catalyctic P systems with a bistable catalyst.

Proof. Similar to that of the previous theorem. This time we do not need to
consider alternating turns in the application of instruction SUB, hence, the proof
even simplifies a little. □

The above proofs demonstrate the fact that P systems with synchronization of
rules and the strong application mode are able to simulate register machines either
with reusage or without reusage of objects. The question naturally arises how far
can we go in the simplification of rules constituting the P system. In what follows,
we assert a claim saying that non-cooperative rules are not enough for ensuring
computational completeness. We omit the more or less intuitive argument for the
claim, however, it already provides us with a string justification that the statement
holds. We formulate our assertion for the case (S1) only, the case for (S2) being
similar, mutatis mutandis.

Theorem 3. Let Π be a P system of degree 1 with synchronization of rules, with
non-cooperative rules of execution mode (S1). Then Π is not computationally com-
plete.

Proof. [Sketch] The intuitive argument relies on the fact that Π cannot compute
the sg function, where

sg =

{
1 if n = 0,
0 otherwise.

More precisely, we show that, if O = {a1, . . . , an} is the object set and c =
(c(a1), . . . , c(an)) is a corresponding configuration of Π, when we are given two
configurations c′ and c′′ such that c′ ⊑ c′′ as multisets, then Π cannot evolve
on c′ and c′′ such that, upon halting, the reverse relation would hold. I.e., when
c′′ ⇒∗ c′′ and c′′ is a hlating configuration then there exists a halting configuration
c′ such that c′ ⇒∗ c′. Since Π computes a function, it cannot be the case that the
result for the input c′ is represented by a configuration c for which c ⊑ c′′ does
not hold. □

4 Concluding remarks

• The problems discussed in the paper stem from a specific membrane system
defined by Aman et al. [1]. Our results partly deviate from the usual membrane
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system notions by examining rule applications with the possibility of reusage
of elements even in the same computational step. The execution modes (W1)
and (S1) could have equally been formulated for computational models with
this property, e.g., for Petri nets.

• In some programming languages, like SML [4], lines are processed from top to
bottom. This imports lends some control facilities to program execution. The
present results are in accordance with this experience of programmers: the weak
application mode could be associated with a purely declarative philosophy of
program execution, while the strong application mode can be related to an
implementation where the order of instructions matter. Our result intimates
that setting up an order of execution for the rules adds computational strength
to the programming language implementation.

• The P systems constructed for the simulation of register machines look very
much like generalized communicating P systems (GCPS) in appearance [5].
GCPSs posses a graph-like structure, where each node, called a cell, contains
a multiset of objects which may move between the cells by the so-called com-
munication rules. A communication rule has the form (a, i)(b, j) → (c, k)(d, l),
where a, b, c, d are objects and i, j, k, l represent the input and output regions,
respectively. Depending on the values of the identifiers i, j, k, l, several re-
stricted forms of interaction rules can be specified. Generalized communicating
P systems mostly obey the maximally parallel rule execution mode. It can be
shown that, in most of the cases, GCPSs are Turing complete even with a
set of restricted form of interaction rule and taking a relatively small, fixed
number of cells [5]. Computational completeness is preserved when we consider
an alphabet with one object and rules of restricted types or only as many as
three cells together with rules of restricted types [6, 7]. It would be interesting
to explore the similarities and differences between GCPSs and the computa-
tional model defined in this paper and obtain results of an analogous nature
by restricting the form of the rules, the number of cells or the number of ob-
jects. We would emphasize the main difference between the two computational
models: with synchronization of rules Turing completeness is achieved without
additional control facilities in the strong application mode, namely, without
imposing the necessity of maximally parallel execution mode. Hence, results of
somehow different types should be expected in our case.
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Summary. In this research, we begin to investigate the relationship between polymor-
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1 Introduction

Membrane systems (P systems) are computational models whose computation is
based on the processes taking place in living cells. They consist of several nested
membranes, these are called regions. The contents of the regions are multisets.
In each step, we apply rule(s) in each region (if applicable), so we apply multiple
rewriting rules in parallel until we reach a halting configuration.

The difference between polymorphic P systems and P systems is the relation-
ship between multisets and rules. In polymorphic P systems, the contents of the
regions form the rules. As the contents of the regions change, the corresponding
rules also change, we call these dynamic rules. Each rule has two regions that make
up the left and right sides of the rule. For more information, see the survey [1].

The results of the article [2] demonstrate the power of the model. in the case of
using cooperative rules, any recursively enumerable set of numbers is generated.
As a result, we deal with the non-cooperative case, which generates languages,
interesting, mainly from the point of view that exponential, even super-exponential
growth of the number of objects within the system can be achieved.

In this article, we begin to investigate the relationship between non-cooperative
polymorphic P systems and parallel communicating ET0L systems. In the follow-
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ing, after the necessary preliminaries and definitions in section 2, we present an
example in section 3. Through this example, we show that it is possible that some
kind of relationship exists between the two models, based on the definitions. We
create a parallel communicating ET0L system that simulates the computation of
a simple non-cooperative polymorphic P system.

2 Preliminaries and Definitions

In this section, we define the basic definitions and notions we will use. For more
information about formal language theory, see [3], and [4, 5] for details about
membrane computing.

First, we define the formal alphabet. An alphabet V is a finite non-empty set
of symbols called letters. A string (or word) over V is a finite sequence of letters,
the set of all strings over V is denoted by V ∗, and V + = V ∗ \{λ} where λ denotes
the empty string. If we fix an order V = {a1, a2, . . . , an} of the letters, then the
vector (|w|a1

, |w|a2
, . . . , |w|an

) is called the Parikh vector of the word w ∈ V ∗.
If N denotes the set of nonnegative integers, then a multiset over a set U is a

mapping M : U → N where M(a), for all a ∈ U , is the multiplicity of element a in
the multiset M . If U is finite, U = {a1, a2, . . . an}, then M can also be represented

by a string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n (and all permutations of this string) where

aj denotes the string obtained by concatenating j ∈ N occurrences of the letter
a ∈ V (with a0 = λ).

A. Lindenmayer introduced Lindenmayer systems (L systems for short) in 1968.
He introduced these systems with the aim of being able to describe the development
of organisms known from biology using formal languages. L systems are parallel
rewriting systems, see [6, 7] for more information on this area.

In the following, we define a version of the L systems, the ET0L systems, which
are extended, tabled, and interactionless versions of the original L systems.

An ET0L system is a quadruple G = (V, T, U, ω) where V is an alphabet, T ⊆ V
is a terminal alphabet, ω ∈ V + is the initial word of G, and U = (P1, . . . , Pm)
where Pi, 1 ≤ i ≤ m, are finite sets of context-free productions over V (called
tables), such that for each a ∈ V , there is at least one rule a → α, α ∈ V ∗ in each
table.

In each computational step, G rewrites all the symbols of the current sentential
form with the rules of one of the tables in U . The language generated by G consists
of all terminal strings which can be generated in a series of computational steps
(a derivation) starting from the initial word.

Let L(G) be the language generated by G, then L(G) = {u ∈ T ∗ | w ⇒∗ u}
where ⇒ denotes a computational step , and ⇒∗ is the reflexive and transitive
closure of ⇒.

We are not interested in the character string generated by the ET0L system
as a sequence of letters, but only in the multiples of the different letters, i.e. the
Parikh vectors of the words. This is necessary because we will connect the ET0L
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languages to the multiset languages of the P systems. We denote by Ps(G) the set
of Parikh vectors corresponding the strings of L(G) (Parikh set of L(G)), and by
PsET0L the class of Parikh sets corresponding to the class of languages generated
by ET0L systems.

Polymorphic membrane systems were introduced in [2]. The rules in polymor-
phic P systems are defined by the contents of specific membrane regions corre-
sponding to the left- and right-hand sides of the rule. As a result, the rules be-
longing to the regions change(s) during the computation. These rules are called
dynamic rules.

A polymorphic P system is a tuple

Π = (O, T, µ, ws, ⟨w1L, w1R⟩ , . . . , ⟨wnL, wnR⟩ , ho),

where O is the alphabet of objects, T ⊆ O is the set of terminal objects, µ is the
membrane structure consisting of 2n+1 membranes labelled by a symbol from the
set H = {s, 1L, 1R, . . . , nL, nR}, the elements of the multiset ws are the initial
contents of the skin membrane, the pairs of multisets ⟨wiL, wiR⟩ correspond to the
initial contents of membranes iL and iR, 1 ≤ i ≤ n, and ho ∈ H is the label of
the output membrane.

The rules of the polymorphic membrane system are not given statically in
the initial configuration. In each step, they are dynamically derived based on the
contents of the left and right (iL and iR, 1 ≤ i ≤ n) membrane pairs. Thus, if the
membranes iL and iR belonging to the i-th membrane pair contain multisets u
and v respectively, then in the next step we transform their parent membrane as
if the multiset rewriting rule u → v were present.

If there is at least one rule in a system Π where the number of objects in u (the
multiset on the left-hand side) can grow to be greater than one, then we say that
Π is a cooperative system, otherwise, it is a non-cooperative system. The P system
is a series of computational steps in which the rules belonging to the given region
are applied in a maximal parallel way. Each object can be rewritten by at most
one rule in one step. The P system reaches a halting configuration when no rule
can be applied in any of the regions, so no more computational steps are possible.

The set of vectors N(Π) generated by the polymorphic P system Π with
the terminal alphabet T is the set of Parikh vectors among the strings w ∈ T ∗

corresponding to the output ho of multisets of terminal objects appearing in the
region in a halting configuration Π, which is reached by computation starting in
the initial configuration of the system.

We need the finitely representable (FIN-representable) property to define
the possible objects belonging to the regions of the membrane system. FIN-
representable property were introduced in [8]. Before describing the finitely repre-
sentable property, we need a definition of σ∗.

Let Π = (O, T, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨wnL, wnR⟩, ho) be a polymorphic P
system, and let wj,h denote the multiset after the jth step of the computa-
tion contained by the region labelled by h of Π for some j ≥ 0, where h ∈
{s, 1L, 1R, . . . , nL, nR}. We say that w′

j,h is in the successor set of wj,h, denoted
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as w′
j,h ∈ σj,h(wj,h), if w

′
j,h can be obtained from wj,h by the maximally parallel

applications of the multiset rewriting rules associated to the region h.
If for the same wj,h as above, we fix σ0

j,h(wj,h) = {wj,h} for k ≥ 0 and for any

j ≥ 0, we have σk+1
j,h (wj,h) = σj+k,h(σ

k
j,h(wj,h)) , then we can define

σ∗
j,h =

⋃
k≥0

σk
j,h(wj,h).

Given a polymorphic P system (Π), a region h of Π is finitely representable
(or FIN − representable) if, starting from wh, the multiset of initial objects of h,
the set of successor multisets of wh is finite, σ∗

0,h(wh) is finite.
We will need the definition of a finite transition system. Later on, we can

represent the rules for the regions of the membrane system with state transitions.
An finite transition system M can be denoted as a triple M = (Q, q, δ) where Q
is a finite set of states, q ∈ Q is the initial state, and δ : Q → 2Q is the state
transition mapping. A state q′ ∈ δ(q) is called the successor state of q, and q ∈ Q
is called a halting state if δ(q) = ∅.

Parallel communicating grammar systems with Lindenmayer systems as com-
ponents were introduced in [7]. In the following we recall the definition of parallel
communicating ET0L systems (PC ET0L systems for short) based on [9].

A parallel communicating grammar system with n components is a (n+3) tuple

Γ = (N,K, T,G1, . . . , Gn), where

N is a nonterminal alphabet, T is a terminal alphabet and K is an alphabet of
query symbols (K = {Q1, Q2, . . . , Qn}). N,K and T are pairwise disjoint sets.
In case the components are Lindenmayer systems, then Gi = (N ∪ K,T, Pi, ωi),
where 1 ≤ i ≤ n with nonterminal and terminal alphabets as above, a table of
rewriting rules in case of ET0L systems Pi, and an axiom ωi ∈ (N ∪ T )∗. In most
cases we call G1 the master grammar of Γ .

The language generated by a parallel communicating system of extended Lin-
denmayer systems, Γ = (N,K, T,G1, . . . , Gn), where Gi = (N ∪ K,T, Pi, ωi),
1 ≤ i ≤ n, is

L(Γ ) = {α1 ∈ T ∗|(ω1, . . . , ωn) ⇒∗ (α1, . . . , αn)}
where G1 is the master grammar of Γ .

3 Polymorphic P systems vs. PC ET0L systems

In this chapter, we start to examine the relationship between general non-
cooperative polymorphic P systems and parallel communicating ET0L systems.

Using the definitions introduced in the previous chapter, we would like to show
that probably the PC ET0L systems can generate the same class of languages as
non-cooperative polymorphic P systems. Let’s examine an example in which we
construct a PC ET0L system for a non-cooperative polymorphic P system.
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2 : a → a
3 : a → b
4 : b → d
5 : d → d
6 : d → gf

7 : e → de
8 : e → c

1L

1R

a

e

bba
S

Fig. 1: The polymorphic P system Π of Example 1

Example 1. Consider a non-cooperative polymorphic P system

Π = (O, T, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨w8L, w8R⟩, s)

where O = T = {a, b, c, d, e, gf} and the membrane structure is

µ = [ [. . .]1L [. . .]1R ]s,

where the child membranes of 1L are [ ]2L [ ]2R . . . [ ]6L [ ]6R, the children of 1R
are [ ]7L [ ]7R, [ ]8L [ ]8R.

Let
ws = bba, w1L = a, w1R = e,

and using the simplified notation for static (non-dynamic) rules, let the rules cor-
responding to 1L be

r2 : a → a, r3 : a → b, r4 : b → d, r5 : d → d, r6 : d → gf ,

and the rule corresponding to 1R be r7 : e → de, r8 : e → c, as illustrated in
Figure 1.

According to the non-cooperative property, in each step 1-1 letter changes
in 1L. In the following we show that 1L is FIN-representable. Concerning 1L,
observe that σ∗

0,1L(a) = {a, b, d, gf} with σ0,1L(a) = σj,1L(a) = {a, b}, σ0,1L(b) =
σj,1L(b) = {d}, σ0,1L(d) = σj,1L(d) = {d, gf}, and σ0,1L(gf ) = σj,1L(gf ) = ∅ for
all j ≥ 0.

The 1R region is not FIN-representable, but from the point of view of the task,
for us, the examination of the stopping of the regions on the right is not essential.
It is sufficient that the FIN-representable property is true for the left sides, which
will be true in all cases due to the non-cooperative property.

The skin region is not FIN-representable, as the dynamical rule r1 given by the
membranes labelled with 1L and 1R has more than one symbol on its right-hand
side in each computational step, and this means that the number of symbols in
the skin region is increasing with each rule application.

Following the steps introduced in [8], starting from the deepest (static) rules of
the membrane system, we create the transition systems for the regions. To simplify
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the example, we do not create transition systems for the static rules, but we know
that they are the basis of the transition systems created for the higher levels. Due
to the non-cooperativity and the FIN-representable property, a transition system
can be constructed for each left-side membrane. Based on this, let’s construct a
transition system for the 1L region.

Start with the construction of M2...6 = (R2...6, r2...6, δ2...6) as

• R2...6 = {r̄2...6} where
• r̄2...6 = (r̄2, . . . , r̄6) with r̄2 = ((a, ∅), (a, ∅)), r̄3 = ((a, ∅), (b, ∅)),

r̄4 = ((b, ∅), (d, ∅)), r̄5 = ((d, ∅), (d, ∅)), r̄6 = ((d, ∅), (gf , ∅)), and
• δ2...6(r̄2...6) = ∅.
Note that the rule set corresponding to r̄2...6 is {r2, r3, r4, r5, r6} = {a → a, a →
b, b → d, d → d, d → gf}.

Now we can construct M1L transition system as follows: M1L = (Q1L, q0, δ1L),
where the set of possible states is Q1L = {a, b, d, gf}× {(r̄2, r̄3, r̄4, r̄5, r̄6)}, that is,

Q1L = {q0 : (a, (r̄2, r̄3, r̄4, r̄5, r̄6)), q1 : (b, (r̄2, r̄3, r̄4, r̄5, r̄6)),

q2 : (d, (r̄2, r̄3, r̄4, r̄5, r̄6)), q3 : (gf , (r̄2, r̄3, r̄4, r̄5, r̄6))},
the initial state is q0, and the transition mapping is defined as

δ1L(q0) = {(q0), (q1)},
δ1L(q1) = {(q2)},
δ1L(q2) = {(q2), (q3)},
δ1L(q3) = ∅.

It follows from this transition map that the state that starts with gf is a final
state. This shows that the 1L region is FIN-representable.

Construct a PC ET0L system that simulates the operation of the polymor-
phic membrane system. During construction, the current states of the FIN-
representable regions must be recorded in PC ET0L sentential form.

Let us consider a PC ET0L system Γ = (N,K, T,Gs1L, G1R, Gm, Gc), simu-
lating this membrane system.

In the following |Pi| denote the number of tables in Pi, and Pi,j denote the
j-th table of Pi, 1 ≤ i ≤ n, 1 ≤ j ≤ |Pi|. |Ps1L| = 4, |P1R| = 1, |Pm| = 1, |Pc| = 1.
Let

N = {q0, q1, q2, q3, F, S1R, Sm, Sc} non-terminals,

K = {Q1R, Qs1L, Qc} query symbols and

T = {a, b, c, d, e, } terminals.

The initial string of the Gs1L component be ωs1L and the associated tables are
as follows:



(Very) Initial Ideas on Non-cooperative Polymorphic P Systems . . . 35

ωs1L = bbaq0,

Ps1L,1 = {q0 → q0, q0 → q1, q1 → F, q2 → F, q3 → F, a → Q1R},
Ps1L,2 = {q1 → q2, q0 → F, q2 → F, q3 → F, b → Q1R},
Ps1L,3 = {q2 → q2, q2 → q3, q0 → F, q1 → F, q3 → F, d → Q1R}
Ps1L,4 = {q3 → q3, q0 → F, q1 → F, q2 → F}

The initial string of the G1R component be ω1R and the associated tables are
as follows:

ω1R = S1R,

P1R,1 = {S1R → e, e → de, e → c}.

The initial string of the Gm component be ωm and the associated tables are
as follows:

ωm = Sm,

Pm,1 = {Sm → Sm, Sm → Qs1L, q3 → Qc, x → F |x ̸= q3},

The initial string of the Gc component be ωc and the associated tables are as
follows:

ωc = Sc,

Pc,1 = {Sc → Sc, Sc → Q1R, x → λ, e → F |x ∈ (c, d)},

In the case of P systems, we denote the current states as follows: (u, v, w),
where u denotes the contents of s, v denotes the contents of 1L and w denotes the
contents of 1R. To simplify the example, static regions are not marked separately,
since their content is always constant. With this triple, we only consider those
regions whose contents change.

The initial configuration is based on the construction of the P system, we can
choose between two rules (rule 2 and rule 3) for the object a in 1L during the first
step. Consequently, there are two different cases. Let’s examine both cases. First,
let’s look at an example where Π applies r2 : a → a during steps 1 and 2, and the
rule 3 .

(bba, a, e) ⇒(1,2,7) (bbe, a, de) ⇒(−,2,7)

(bbe, a, dde) ⇒(−,3,8) (bbe, b, ddc) ⇒(1,4,−)

(ddcddce, d, ddc) ⇒ . . .
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The triple index above the arrows are the numbers of the currently applied
rules in each region. For example: (bba, a, e) ⇒(1,2,7) (bbe, a, de) means, that we
used rule 1 in s, rule 2 in 1L and rule 7 in 1R.

So we start with (bba, a, e), apply r1 : a → e rule in s, rule 2 in 1L and rule 7
in 1R. After applying these rules, the regions change as (bbe, a, de). At this point
we are not able to apply rule 1 in s, but we can use rule 2 or rule 3 in 1L, rule 7
or 8 in 1R. Use rule 2 and rule 7: (bbe, a, dde). We (still) cannot apply rule 1 in s,
apply rule 3 in 1L and rule 8 in 1R: (bbe, b, ddc). Apply rule 1 in s, rule 4 in 1L:
(ddcddce, d, ddc).

In the case of PC ET0L systems, we denote the current strings of components
as follows: (us1L, u1R, um, uc), where us1L denotes the sentential form of Gs1L,
where s index denotes the content of S in Π and 1L index denotes the content of
1L region in Π, u1R denotes the sentential form of G1R, um denotes the sentential
form of Gm, uc denotes the sentential form of Gc.

We simulate the steps performed by the polymorphic P system:

( bbaq0, S1R, Sm, Sc) ⇒(1,1,1,1) (bbQ1Rq0, e, Sm, Sc) ⇒com

( bbeq0, e, Sm, Sc) ⇒(1,1,1,1) (bbeq0, de, Sm, Sc) ⇒(1,1,1,1)

( bbeq1, dde, Sm, Sc) ⇒(2,1,1,1) (Q1RQ1Req2, ddc, Sm, Sc) ⇒com

( ddcddceq2, ddc, Sm, Sc) ⇒ . . .

The quadruple index above the arrows (except for arrows for communication
steps) are the indexes of the currently applied tables in each component. For
example: (bbaq0, S1R, Sm, Sc) ⇒(1,1,1,1) (bbQ1Rq0, e, Sm, Sc) means, that we used
the first tables in all components.

Start with (bbaq0, S1R, Sm, Sc), apply a → Q1R and q0 → q0 rules from Ps1L,1

in GS1L, S1R → e rule from P1R,1 in G1R, and Sm → Sm, Sc → Sc from Pm,1

and Pc,1 in Gm an Gc (apply these rules until the end of the calculation). With
the appearance of the Q1R query symbol, a communication step follows ( ⇒com

denotes the communication steps). In the communication step, with the help of
Q1R, we can insert the sentential form from G1R into Gs1L.

Following the further steps, it can be seen that the same values appear in
component Gs1L as in the s region in Π2.

With the help of query symbols, PC ET0L can simulate the rewriting of the
contents of s in the P system in one step + one communication step.

Let’s look at an example where the P system applies rule 2 during step 1 and
rule 3 during step 2, i.e. r2 : a → a first, and then r3 : a → b.

( bba, a, e) ⇒(1,3,7) (bbe, b, de) ⇒(1,4,7) (dedee, d, dde) ⇒(1,5,7)

( ddeeddeee, d, d3e) ⇒(1,5,8) (d3ed3eeed3ed3eeee, d, d4e) ⇒ . . .

Similar to the previous example, by taking one step + one-communication
steps, the PC ET0L simulates the steps of the polymorphic P system.
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( bbaq0, S1R, Sm, Sc) ⇒(1,1,1,1) (bbQ1Rq1, e, Sm, Sc) ⇒com

( bbeq1, e, Sm, Sc) ⇒(2,1,1,1) (Q1RQ1Req2, de, Sm, Sc) ⇒com

( dedeeq2, de, Sm, Sc) ⇒(3,1,1,1) (Q1ReQ1Reeq2, dde, Sm, Sc) ⇒com

( ddeeddeeeq2, dde, Sm, Sc) ⇒(3,1,1,1)

( Q1RQ1ReeQ1RQ1Reeeq2, ddde, Sm, Sc) ⇒com

( d3ed3eeed3ed3eeeeq2, ddde, Sm, Sc) ⇒ . . .

As we can see in the previous two examples, we can assuem that PC ET0L can
simulate the first few steps of the Polymorphic P system in the subsequent steps
using the appropriate tables.

In general the configuration of the polymorphic P system can be denoted by a
triple, where α is the content of S, x is the content of 1L, a single object due to
the non-cooperative property, and β′ is the content of 1R:

(α, x, β′) where α = α1xα2x . . . xαk

then we can denote the triple as follows: (α1xα2x . . . xαk, x, β
′).

In general the configuration of the PC ET0L system can be denoted with a
4-tuple, with its components. The sentential form of the first component: us1L,
in which s index means that this component contains the content of s and 1L
index means that this component also contains the content of 1L. The sentential
form of the second component: β, where β is the ancestor of β′ appearing in
the polymorphic P system. The sentential form of the third component: Sm, the
content of Gm, and the sentential form of the fourth component: Sc, the content
of Gc

( us1L, β, Sm, Sc) where us1L = α1xα2x . . . xαkqi,

then the four component can be denoted as follows:

( α1xα2x . . . xαkqi, β, Sm, Sc) where

the x’s are denotes the first components of qi (i.e., a, b, d, or gf ).
In the case of this general construction, examine how the content of the P

system changes after one step. Apply the first rule, which is x → β′, to the content
of s, i.e., the first element of the triple. Apply a rule to x from the applicable rules
of 1L, if it exists, let x’s successor be x′. Similarly for β′, apply a rule from the
applicable rules of 1R, if it exists, let β′’s successor be β′′:

( α1xα2x . . . xαk, x, β
′) ⇒ (α1β

′α2β
′ . . . β′αk, x

′, β′′).

In order for the PC ET0L system to be able to simulate this step, it must take
one step and one communication step. In the first component, applying the rule
corresponding to x, it rewrites the x’s to the query symbols Q1R. In parallel, apply
one of the following applicable rules to qi , the same one that the polymorphic P
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system applied to 1L. In the second component, apply one of the following applica-
ble rules to β, the one that transforms β′. In the third and fourth component, apply
Sm → Sm and Sc → Sc rules. This step is followed by the communication step.
In accordance with the PC ET0L, the content of the corresponding component, in
this case the content of the second component, G1R, is copied to the place of the
query symbols in the first component. The content of the second component is β′,
which is the same as the right side of rule 1 applied in the polymorphic P System.
It can be seen that the content of the first component of Γ (α1β

′α2β
′ . . . β′αkq

′
i)

is the same as the content of s and 1L after one step in the P system:

( α1xα2x . . . xαkqi, β, Sm, Sc) ⇒
( α1Q1Rα2Q1R . . . Q1Rαkq

′
i, β

′, Sm, Sc) ⇒com

( α1β
′α2β

′ . . . β′αkq
′
i, β

′, Sm, Sc).

The polymorphic P system reaches a halting state when there are no rules in
any region that can be applied to its content. In this example, the system reaches
the halting configuration when there are no applicable rules for the contents of
1L, 1R and s.

In 1L region, the computation stops, after applying rule (d → gf ). In 1R region,
the computation stops, after applying rule (e → c).

After applying (d → gf ) in 1L, rule 1 can never be applied in s again.
In general, we can say that the polymorphic P system is in a halting state if

its configuration:

(α, gf , d . . . dc).

Then α is the word (multiset) generated by the polymorphic P system.
To generate the α with the PC ET0L system we need Gm and Gc components.

The Gm and Gc components apply the corresponding Sm → Sm, Sc → Sc rules as
long as the calculation is in progress. In order to generate α, the rule Sm → QS1L

must be applied in Gm if the symbol q3 appeared in GS1L. In parallel, we apply
the rule Sc → Q1R in Gc:

( αq3, β, Sm, Sc) where β = dd . . . dc

( αq3, β, Sm, Sc) ⇒ (αq3, β,QS1L, Q1R) ⇒com

( αq3, β, αq3, β) ⇒ . . . .

Then, after the communication step, the rules of the Pm,1 table belonging to
the Gm component and the Pc,1 table belonging to the Gc can be applied.

In Gc, c → λ and d → λ rules, delete all c and d letters. If the rules Sm → Qs1L,
Sc → Q1R were applied at the appropriate time of the calculation, all values of
the Gc component will be deleted by these rules.
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It is important to delete only those letters for which there is no rule, i.e., they
will no longer change.

If the process stops at an inappropriate time, then at least one letter e must
remain in 1R, that cannot be deleted, and apply the rule e → F , which results in
an error.

After the deletions, apply the q3 → Qc in the Gm component; if there is x in
α where x ̸= q3, then apply the x → F rule. A trap letter will appear, indicating
that the calculation was incorrect.

If the letter F does not appear and the entire content of the Gc component has
been deleted, then after the communication step, the content of the Gm component
(the master) will be α, which is an accepted word consisting of terminal letters.

( αq3, β, αQ
′
0, λ) ⇒com

( αq3, β, α, λ).

4 Conclusion

Based on the example developed in section 3, we can assume that, using similar
methods, we can create a PC ET0L system that can simulate its operation for
other, even more complex, deeper non-cooperative polymorphic P systems. Our
work is an initial step in finding the relationship between non-cooperative poly-
morphic P systems and parallel communicating ET0L systems.

Acknowledgements

Supported by the University of Debrecen Scientific Research Bridging Fund (DE-
TKA).

References

1. Alhazov, A., Ivanov, S., Freund, R.: Polymorphic P systems: A survey. Bulletin of
the International Membrane Computing Society 2 (2016) 79–101

2. Alhazov, A., Ivanov, S., Rogozhin, Y.: Polymorphic P systems. In Gheorghe, M.,
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We propose SN P systems that allows the sending/receiving of different kinds
of spikes through different channels. Our proposal is related to [5], where the
authors proposed the use of different spiking channels to connect the neurons in the
network. Observe that the idea of connecting different target neurons in the same
rule was initially proposed in [1] where the inclusion of target neurons in the rules
is allowed. This idea, and the relationship with multiple channels, was highlighted
in [7] where the authors considered this ingredient in the formal framework of SN
P systems. The other variant that we have considered in this work is showed in
[6], where the authors proposed the use of a non-singleton alphabet to define the
spikes of the system.

Here, we combine multiple channels in the neuron rules and different kinds
of spikes together. The rules can manage different spikes at every moment, and
they can be sent by different channels. This combination of ingedients allows the
simulation of other models proposed in the membrane computing research area,
such as virus machines [3] and neural-like P systems with plasmids [2].

SN P systems

Definition 1. [4] A spiking neural P system (SN P system, for short) of degree
m ≥ 1 is defined by the following tupleΠ = (O, σ1, σ2, . . . , σm, syn, in, out), where:

1. O = {a} is a singleton alphabet of spikes
2. σ1, σ2, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where

a) ni ≥ 0 is the initial number of spikes contained in σi.
b) Ri is a finite set of rules in one of the following two forms:

• firing or spiking rules: E/ac → a; d where E is a regular expression
over O, and c ≥ 1, d ≥ 0 are integer numbers. We omit E whenever it
be equal to ac, and we omit d whenever it be equal to 0.

1 Corresponding author
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• forgetting rules: as → λ, for s ≥ 1, with the restriction that for each
spiking rule E/ac → a; d then as /∈ L(E) (L(E) is the regular language
defined by E)

3. syn ⊆ {1, 2, . . .m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons

4. in, out ∈ {1, . . . ,m} indicate the input and the output neurons of Π.

□

Definition 2. [5] A spiking neural P system with multiple channels (SNP-MC sys-
tem, for short) of degree m ≥ 1 is defined by Π = (O,L, σ1, σ2, . . . , σm, syn, out),
where:

1. O = {a} is a singleton alphabet of spikes
2. L = {1, 2, . . . , N} is the alphabet of channel labels
3. σ1, σ2, . . . , σm are neurons of the form σi = (ni, Li, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi.
b) Li ⊆ L is a finite set of channels labels used in the neuron
c) Ri is a finite set of extended rules in the form E/ac → ap(l) where E is a

regular expression over O, and c ≥ 1, p ≥ 0, l ∈ Li.
4. syn = {(i, j, l)} ⊆ {1, 2, . . .m} × {1, 2, . . . ,m} × L with (i, i, l) /∈ syn for

1 ≤ i ≤ m and l ∈ L (synapse connections);
5. out ∈ {1, . . . ,m} is the output neuron.

□

In this case, the forgetting rules can be established as those extended rules
with p = 0 and no regular expression E. Every rule indicates the channel that the
rule uses to send the spikes. The spikes are only sent to the connected neurons by
the channel established in the rule. In each computation step there can be some
competition between different rules at the neuron. Provided that more than one
rule can be applied, then the system selects only one of them non-deterministically.
So, the neurons work in sequential manner (they apply only one rule at every
computation step).

Definition 3. [6] A spiking neural P system with colored spikes (SNP-CS system)
of degree m ≥ 1 is defined by Π = (C,O, σ1, σ2, . . . , σm, syn, in, out), where:

1. C = {1, 2, . . . g} is a finite set of colors to mark the color of a spike. Every
spike is associated with a unique color

2. O = {a1, a2, . . . , ag} is an alphabet of g colored spikes
3. σ1, σ2, . . . , σm are neurons of the form σi = (< ni

1, n
i
2, . . . , n

i
g >,Ri), 1 ≤ i ≤

m, where:
a) nih ∈ N is the number of spikes ah initially placed in neuron σi.
b) Ri is a finite set of spiking and forgetting rules in the form:

• Spiking rule: E/ac11 a
c2
2 . . . a

cg
g → ap1

1 a
p2

2 . . . a
cg
g ; d where E is a regular

expression over O, and ci, pi ≥ 0;
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• Forgetting rule: as11 a
s2
2 . . . a

sg
g → λ where as11 a

s2
2 . . . a

sg
g /∈ L(E) for any

regular expression E associated with a spiking rule;
4. syn ⊆ {1, 2, . . .m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m;
5. in, out ∈ {1, . . .m} are the input and the output neurons

□

The work in this model is similar as in the original model described in [4].

Spiking neural P systems with multiple channels in the rules and
colored spikes

We introduce a model of SN P systems that combines the use of multiple channels
that can be located both in the synaptic connections and in the rules of the neurons
themselves, together with a colored spikes alphabet (i.e. a non-singleton alphabet).

Definition 4. A spiking neural P system with multiple channels and colored
spikes (SNP-MC-CS system, for short) of degree m ≥ 1 is defined by Π =
(O,L, σ1, σ2, . . . , σm, syn, in), where:

1. O = {a1, a2, . . . , ag} is an alphabet with g colored spikes
2. L = {1, 2, . . . , N} is an alphabet of channel labels
3. σ1, σ2, . . . , σm are neurons of the form σi = (wi, Li, Ri), 1 ≤ i ≤ m, where:

a) wi ∈ O∗ is a string that denotes the initial multiset of spikes in the neuron.
b) Li ⊆ L is a finite set of channels labels used in the neuron
c) Ri is a finite set of rules in the forms:

• Firing rules: E/wc → w1 (l1)w2 (l2) . . . wn (ln) ; d where E is a regular
expression over O, and wc, wi ∈ O∗ 1 ≤ i ≤ n, li ∈ Li, d ≥ 0.

• Forgetting rules: wc → λ, where wc ∈ O∗.
4. syn ⊆ {1, 2, . . .m} × {1, 2, . . . ,m, out} × L are the set of synapse connections

with (i, i, l) /∈ syn for 1 ≤ i ≤ m and ∀ l ∈ L. Observe that (i, out, l) denotes
that the neuron σi sends the spikes out to the environment by the channel l.

5. in ∈ 1, . . . ,m is the input neuron. Observe that the input neuron can be
omitted whenever the system is a generator.

□

The firing rules E/wc → w1 (l1)w2 (l2) . . . wn (ln) ; d of the neuron σi can be
applied whenever ψO(xi) ∈ ΨO(LE), where xi denotes the spikes in the neuron
σi, ψO(xi) denotes the Parikh set of xi, and LE is the language denoted by the
regular expression E. In such a case, the spikes denoted by wc are removed from
the neuron, and the spikes denoted by wi are sent to the connected neurons (or to
the environment) by the channel li according to the synaptic connections of the
neuron. If the delay d > 0, then the neuron is blocked, and it cannot neither send
or receive spikes after d computation steps.

The forgetting rules of the neuron σi in the form wc → λ, can be applied
whenever no firing rule is applicable and (∀ai ∈ O) |wc|ai

≤ |xi|ai
, where xi
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denotes the spikes in the neuron σi. In such a case, the spikes denoted by wc are
removed from the neuron.

The system runs in a maximally parallel manner, that is, at every computation
step, every neuron that has some applicable rule will apply it. If there are more
than one applicable rule, the firing rules will have priority over those of forgetting.
If there are more than one applicable firing rule in conflict (they require common
spikes) then, only one of them is non-deterministically selected to be applied, the
chosen rule will be executed as many times as possible. Observe that, in this case,
the system behavior is similar to the one of transition cell-like P systems. If a rule
with a delay is activated, the neuron will be blocked just as in SN P systems. If
several rules with delays are applied at the same time, the neuron will be blocked
for the maximum delay value of the applied rules. Finally, it should be noted that
the compution halts when there is no delayed neuron, and no rule can be applied in
any neuron. Regarding the output of the system, we can obtain it in four different
ways:

• halting mode: The result of the computation is the number of spikes that have
been sent to the environment throughout computation, no matter their colors.
The output is obtained when the system halts.

• multi-channel halting mode: As in the halting mode, the output of the model
are the spikes sent to the environment during execution, but they are joined
depending on the channels through which they have been sent (i.e. a non-
negative integer vector is obtained).

• temporary mode: This mode is the one used for generating systems, since it is
not necessary reach a halting configuration, the system output will be read as
the sequence of spikes sent to the environment at every computation step (a
spike train).

• multi-channel temporary mode: It can be used for signal processing, as it allows
reading the output as the sequence of spikes (a spike train) sent out to the
environment at every computation step for every channel.

Theorem 1. SNP-MC-CS systems are universal models of computation.

Simulating other computation models.

The proposed model is able of simulating different models that have been previ-
ously proposed in the field of membrane computing. In this way, the SNP-MC-CS
model aims to be a unifying framework for other alternative models.

Definition 5. [3] A Virus Machine (VM, for short) of degree l(p, q) ,p, q ≥ 1, is a
tuple Π = (Γ,H, I,DH , DI , GC , n1, . . . , np, i1, hout) where:

1. Γ = v is a singleton alphabet;
2. H = h1, . . . , hp and I = i1, . . . , iq are ordered sets such that v /∈ H ∪ I and
H ∩ I = ∅;
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3. DH = (H ∪ {hout} , EH , wH) is a weighted directed graph, where EH ⊆ H ×
(H ∪ {hout}) , (h, h) /∈ Eh for each h ∈ H, out-degree(hout) = 0, and wH is a
mapping from EH onto N− {0} (the set of positive integer numbers);

4. DI = (I, EI , wI) is a weighted directed graph, where EI ⊆ I × I, wI is a
mapping from EI onto N− {0} and, for each vertex ij ∈ I, the out-degree of
ij is less than or equal to 2;

5. GC = (VC , EC) is an undirected bipartite graph, where VC = I ∪ EH , being
I, EH the partition associated with it. In addition, for each vertex ij ∈ I, the
degree of ij is less than or equal to 1.

6. nj ∈ N(1 ≤ j ≤ p);
7. hout /∈ I ∪ v and hout is denoted by h0 in the case that hout /∈ H.

□

Theorem 2. For every Virus Machine there exists an equivalent SNP-MC-CS
system.

Definition 6.[2] A neural-like P systems with plasmids (NP P system, for short)
of degree m ≥ 1, is a construct of the form Π = (O, b1, . . . , bm, link, in, out) where:

1. O = {p1, . . . , pw} is an alphabet of plasmids
2. b1, . . . , bm are bacteria of the form bi = (Ni, Ri) for 1 ≤ i ≤ m where Ni =

⟨n1, n2, . . . , nw⟩ is a vector and nj ≥ 0 is the initial number of plasmids pj
inside bacterium bi for 1 ≤ j ≤ w; and Ri is a finite non-empty set of plasmid
rules of the form C/r1, r2, . . . , rn where condition C is a multiset over O, and,
each rk for 1 ≤ k ≤ n is either one of two forms:

a) A transmit operation: P → out, where P is a submultiset of C;
b) A kill operation: P → λ, where P is a submultiset of C;

3. link ⊂ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ link for 1 ≤ i ≤ m (the links
between bacteria);

4. in, out indicates the input and output bacterium of the system, respectively.
They can be omitted, depending on whether the system is generating outputs
or accepting inputs.

□

Theorem 3. For every NP P system there exists an equivalent SNP-MC-CS sys-
tem.

Conclusions

In this work we have proposed the combination of two variants that had been
previously proposed. We propose that the combination of both variants allows the
simulation of very diverse models, so the combined model can be viewed as an
unification one.

Our future work will be based on considering other models and checking if our
proposal is still so general as to be able to simulate them.
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Summary. The intersection of human behavior and epidemiology is a focal point for un-
derstanding infectious disease dynamics, particularly highlighted by epidemic outbreaks
such as COVID-19. This research introduces an epidemiological model, derived from the
principles of membrane computing, then inspired by biological processes, to analyze the
intricate interplay between societal behavior and disease transmission. The model, struc-
tured hierarchically with Eco-Membranes, Province-Membranes, and Place-Membranes,
facilitates the simulation of diverse geographical and social environments, capturing the
complex dynamics of infectious diseases within various demographic segments. In this
innovative approach lies the integration of mathematical functions to articulate societal
responses to infection rates and vaccination willingness. These functions are based on
the ratio of infected individuals to the total population, vaccine efficacy, and duration
data sourced from multiple studies. The inclusion of demographic characteristics, societal
behaviors, response to infections, and vaccination dynamics provides a multi-dimensional
view of disease spread, especially under the lens of the COVID-19 pandemic. Through
comprehensive simulations, the model examines scenarios incorporating different behav-
ioral responses and intervention strategies, including vaccination dynamics. Sensitivity
analysis confirms the robustness of the model, revealing the critical parameters that in-
fluence the spread of the virus, thus providing valuable insights for targeted public health
interventions.

Keywords: Epidemiological Modeling, Membrane Computing, Behavioral Epidemi-
ology, Infectious Diseases, COVID-19, Vaccination Dynamics.

1 Introduction

In epidemiology of infectious diseases, the emergence of objection to vaccination
against some diseases such as measles and the ongoing COVID-19 pandemic [1] has
emphasized the critical need for innovative and adaptable modeling approaches.
Traditional models [2], while providing valuable insights, often fall short in captur-
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ing the complex interplay between human behavior and disease spread dynamics
[3]. To address this limitation, a new discipline known as Behavioral Epidemiology
of Infectious Diseases has emerged [3, 4], aiming to integrate social science concepts
with infection transmission models [3, 4]. This facilitates a deeper understanding
of the complex interplay between human behavior and disease spread.
The present study employs the paradigm of membrane computing [5], inspired by
biological processes, to offer a new perspective on behavioral epidemiology mod-
eling. By employing a hierarchical structure comprising Environment, Provinces
and places are modeled by membranes, this model enables detailed simulation
of geographical areas and public places. Each Province-Membrane encompasses
Place-Membranes representing specific locations such as schools, workplaces, hos-
pitals, and common areas, while objects within the simulation environment denote
elements like time indicators and individual characteristics. Central to our model
is the societal behavior response to infections, the vaccination dynamics and the
incorporation of demographic characteristics. Our approach provides insights into
disease spread dynamics, particularly in the context of COVID-19. The model
explicitly includes societal behavior responses to infection rates and vaccination
willingness, considering factors like the ratio of infected individuals to the to-
tal population. Additionally, data on vaccine effectiveness [6] and duration from
various sources are incorporated to realistically model infection spread [7]. By in-
corporating infection rules, evolution dynamics, and daily routines for different
demographic groups, the model provides a comprehensive framework for model-
ing infection dynamics and daily behaviors within various scenarios. Overall, this
study explores the application of Membrane Systems to epidemiological research,
aiming to develop an integrated behavioral epidemiology model that accurately
represents infectious disease transmission dynamics, and intervention strategies
while considering the influence of human behavior.

2 Model Description in P System

The proposed model employs a hierarchical structure consisting of Eco-Membrane,
Province-Membranes, and Place-Membranes, facilitating detailed simulation of ge-
ographical areas or public places. This hierarchical setup enables to corectly rep-
resent the intricate interplay of locations and activities that are central to an
individual’s everyday routine. This approach allows for the simulation of spatial
and social dynamics pertinent to disease spread. Specifically, within each province
membrane, key establishments such as schools, workplaces, hospitals, and common
areas transitional spaces connecting different regions are delineated [8] by mod-
elling them as Place-Membranes contained in the Province-Membranes. Objects
represent elements within the simulation environment such as time indicators and
individual characteristics. Key objects are included as; Hour (Houri), Infection
Number (ϕ), Day (di), and demographic categories like Young (g), Adult (a), and
Elderly (an). The role of human behavior in modulating (e.g. by means of sponta-
neous and forced social distancing ) is embedded by means of appropriate function



Integrating Human Behavior and Membrane Computing in . . . 49

Ψ(M) that describes societal behavior response to infection rates, where M is an
information index [3, 4] modeling the information individual has concerning the
spread of the disease.

As far as the disease control, in the model is included the possibility that a
vaccination campaign is enacted as well as the possible partial adherence to the
campaign due to objection to vaccination. The model introduces a function ω(M)
to represent willingness to get vaccinated, considering as information index the
ratio of infected individuals to the total population [3, 4]. Vaccine effectiveness
and duration of the immunity given by the vaccine are incorporated to model
infection reduction realistically.

The LOIMOS framework [1] categorizes infection rates based on immunity and
symptoms, applied across various environments like common areas, schools, work-
places, etc. Rules consider factors like day, time, infection probability, vaccination
status, and mask usage. Infection probability is calculated on the base of current
infections, total individuals, and a decreasing function modeling contagiousness.
Virus incubation lasts for 05 days after contact, transitioning individuals to an
infected state. After incubation, infection progresses through 07 days, followed by
recovery. Recovery grants natural acquired immunity, akin to a perfect vaccine,
lasting for 180 days. Daily schedules are outlined for young individuals, workers,
and the elderly, including activities in common areas, schools, workplaces, and
homes. Rules govern movement between locations, such as entering schools or
workplaces and returning home. Elderly individuals engage in tasks in common
areas with probabilities for different durations and return home afterward. These
rules and routines provide a comprehensive framework for modeling infection dy-
namics, evolution, and daily behaviors within the scenario, incorporating various
factors contributing to disease spread and progression. We built our model and
software by adapting the LOIMOS framework [1], namely adding mobility and be-
havioral response. Technical details of the above illustrated membrane system are
focused on a submitted paper which is not published yet (however it may be made
available upon request): in the following of this work instead we emphasize the
simulation work, which advanced aside the theoretical development of the model.

3 Implementation of the model

The implementation of the model is guided by the objective of creating a simu-
lation framework for infectious diseases using P Systems theory, integrating dy-
namic and behavioral logic into a baseline derived from prior research. The model
draws inspiration from, and goes significantly beyond, the work by Baquero and
coworkers [1]. The keys aspects in this model are membrane structure forms the
basis for organizing a hierarchical structure of a generic epidemiological scenario.
This involves dividing a geographical region into Province-Membranes and fur-
ther subdividing them into Place-Membranes. Entities within the model, such as
individuals and contextual resources, are represented using object-oriented logic.
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This facilitates the mapping from P Systems to a programming language, treating
individuals as singular programming objects with their parameters. A well-defined
membrane structure enables the modeling of different compartments of the sce-
nario, organizing relevant aspects of the epidemiological scope efficiently. Rules
in the P Systems approach represent computations, encapsulating processes like
infection progression, human movement, and vaccination. These rules are trans-
lated into methods and functions within the model. The model can extend beyond
COVID-19 to other communicable diseases by adjusting parameters related to con-
tagion and infection progression. New behavioral logics, demographic information,
and intervention strategies can also be incorporated.The model is scaled to rep-
resent larger scenarios by adding more individuals and expanding the geographic
scope. The simulation aspect can also scale up to handle larger computational
loads by parallelizing the simulation process. The foundation laid by these works
informs the development of a comprehensive epidemiological model based on P
Systems. The model’s adaptability and scalability enable it to evolve beyond its
initial scope, accommodating new disease parameters, variations in agent behavior,
and different intervention strategies. Additionally, the membrane structure and ob-
jects within the model are defined through specialized classes. Membranes such as
schools, workplaces, hospitals, and common areas are represented, each containing
individuals as instances of the Individual class. Attributes and functionalities of
Province-Membrane and Place-Membrane classes facilitate the management of ge-
ographical regions and local environments, while the Individual class encapsulates
attributes and functionalities relevant to individual agents. Behavioral logic, inte-
grated with vaccination logic for convenience, calculates factors such as caution and
vaccination willingness based on the current epidemiological situation. Functions
within the Behavioral Logic class handle the assignment of vaccine effectiveness
and correlate it with duration. The model’s design is grounded in theoretical con-
cepts from P Systems theory and informed by empirical findings [6]. Through care-
fully the implementation of membrane structures, objects, and behavioral logic,
the model provides a versatile framework for simulating and analyzing infectious
disease dynamics. Sensitivity analysis plays a pivotal role in unveiling the param-
eters that significantly influence the dynamics of virus transmission, thus offering
invaluable insights for crafting targeted intervention strategies [4]. By focusing on
parameters identified as having high impacts through both local and global sen-
sitivity analyses, public health officials can enhance their efforts in mitigating the
spread of infectious diseases [9]. This approach is especially critical in overcoming
the hurdles posed by data collection challenges and uncertainties surrounding pa-
rameter values. The combined insights from sensitivity analysis and the developed
models shed light on the multifaceted nature of viral transmission, emphasizing
the necessity of addressing multiple transmission pathways and environmental in-
fluences. Together, they form a comprehensive framework that not only aids in
understanding the complexity inherent in the spread of viral infections but also
serves as a cornerstone for forecasting outbreak patterns and formulating effec-
tive public health responses. This integrated perspective underscores the critical
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need for a holistic approach to disease control, encompassing a broad spectrum
of interventions and a deep understanding of the disease ecology. The software is
designed to model the spread and control of infectious diseases by simulating var-
ious epidemiological scenarios. It focuses on recognizing and validating dynamic
patterns of infectious diseases and providing evolutionary predictions in various
scenarios. The model is structured to utilize Membrane Systems, which are inspired
by the functioning of biological cells. It incorporates hierarchical representation of
environments, describes the movement of individuals in these environments, and
models biological processes like the incubation and infection of viruses [1]. The
model aims to provide a framework for better understanding the dynamics of in-
fectious diseases through simulation results and validating the predictive capacity
of the model against given scenarios.

4 Validations of the Results

The effectiveness of the model in predicting the dissemination of infectious diseases
has been assessed, focusing on the progression trends of the illness over an ex-
tended period, particularly concerning prevalence and mortality rates. Important
factors for the validation phase are highlighted in the following. This analysis aims
to delve into the outcomes of different scenarios, starting from a scenario where
there is minimal behavioral response to the disease and no implemented control
measures. The objective is to first investigate the epidemic’s behavior under these
specific conditions and evaluate the model’s capability to accurately reflect the
patterns of the outbreak. Introducing a few infected individuals into an entirely
susceptible population results in an initial rapid increase in cases. Given the sce-
nario of low adherence to preventive measures and the absence of any intervention
strategies, the basic reproduction number, R0, is expected to surge beyond 1 or 2
swiftly, affecting most of the population and eventually stabilizing the epidemic.
Without incorporating vital dynamics into the model, the infection is predicted to
eventually cease.

In Figure 1, the results of this first scenario are reported. The x-axis represents
time in days, from day 0 to day 365, covering a full year, while the y-axis represents
the prevalence, which is the number of individuals who are currently infected with
the disease at any given time. The curve itself peaks relatively early in the time
span, with the highest prevalence occurring around day 50. The peak prevalence is
shown to be just over 6,500 cases, which is the maximum number of individuals who
are simultaneously infected during the outbreak. After the peak, the prevalence
rapidly decreases, indicating that the number of new daily infections drops as the
population either recovers or succumbs to the disease. The graph returns to near-
zero prevalence after the peak, suggesting that the epidemic subsides, and that
the disease no longer actively spreads within the population. The graph depicts a
rapid, unvarying increase at the outset, leading to a reach of approximately 7000
cases of infection around the 24th day of the model run-through.
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Fig. 1: A simulated epidemic curve showing the prevalence of an infectious disease
over time in a population.

Fig. 2: Trend of new daily cases over the course of a year for an infectious disease
outbreak within a population of 30,000 individuals.

In Figure 2, the number of new daily cases are reported, over a one-year period
(365 days). The curve spikes sharply, with a peak suggesting that the highest
number of new daily cases occurs around day 50. The peak indicates that the
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number of new daily cases rises to slightly over 1300. After the peak, the curve
shows a steep decline, signifying a rapid drop in the number of new daily cases.
Post-peak, the number of new cases gradually approaches zero, suggesting the
outbreak is subsiding.

Fig. 3: Cumulative number of deaths over a year in a population of 30,000 indi-
viduals during an infectious disease outbreak.

In Figure 3, the y-axis indicates the cumulative number of deaths. The curve
shows a rapid rise in deaths early on, reaching a plateau of just over 350 deaths
around day 50. Following the step initial increase, the curve flattens, indicating
that no further deaths are recorded after reaching the plateau.

Figure 4 reports two graphs. The top graph (New Daily Cases Over Time)
marked with blue dots, indicates the number of new cases reported each day.
There are two distinct peaks, suggesting two separate waves of infection. The
first peak occurs before day 50 and rapidly declines, but not to zero, indicating
that the infection was controlled but not eradicated. The second wave starts to
rise around day 150 and peaks higher than the first, before declining again. The
pattern suggests a relapse or a second outbreak, possibly due to a relaxation of
preventive measures or the emergence of a more contagious variant. The bottom
graph (Prevalence Over Time) marked with red dots, illustrates the total number
of active cases at any given time. Like the new daily cases graph, there are two
peaks. The first peak is sharp, indicating a rapid increase in active cases, which
then declines rapidly, possibly due to recovery or death of patients. The second
peak follows the rise in the new daily cases graph, indicating a second wave of active
infections. However, the second prevalence peak is not as sharp as the first, which
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Fig. 4: Progression of an infectious disease over time, measured in days, as seen in
two different metrics: new daily cases and prevalence.

may suggest a slower rate of transmission or a more effective response to the second
wave. Both graphs together show a disease that has at least two significant periods
of transmission. The time between the peaks could indicate successful intervention
measures that temporarily contained the spread of the disease, a period of lower
transmission rates, or possibly the time it took for the disease to resurge or for
a different strain to spread. The graphs do not decline to zero, suggesting the
disease continues to persist in the population beyond the timeframe shown. The
peaks and troughs of these graphs would be of significant interest in analyzing the
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effectiveness of public health interventions, the natural behavior of the disease,
and the response of the public to the presence of the disease over time.

Fig. 5: Epidemiological curves depicting the spread of a disease over time.

In Figure 5, the graph plotted with blue dots shows the number of new cases
reported each day. The x-axis represents time in days, and the y-axis represents the
number of new daily cases. There are two peaks observed, suggesting two separate
waves of the disease. The first peak occurs just before day 50, and the second
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peak is around day 225. The error bars on the dots may indicate the variability or
uncertainty in the daily case counts.

The second graph (Prevalence Over Time) shows the prevalence of the disease
over time. The x-axis is consistent with the first graph, indicating time in days.
The y-axis shows the prevalence, which is typically the number of active cases at
a given time. Similar to the first plot, two peaks are observed, corresponding to
the two waves of new cases. The prevalence peaks are also around day 50 and day
225, shortly after the peaks in new cases. The prevalence curve suggests that as
new cases rise, the number of active cases (prevalence) also rises. As new cases
drop, so does the prevalence.

In our exploration of disease spread dynamics, we delved into several critical
factors that significantly impact the control and progression of infectious diseases.
Through simulations, we analyzed the effect of varying levels of vaccination cover-
age on the temporal spread of disease, providing valuable insights into the efficiency
of vaccination campaigns in curbing outbreaks. Additionally, we investigated the
influence of the population’s behavior, quantified through the caution parameter,
on disease transmission. This analysis underscored the profound effect that col-
lective behavioral changes have on slowing the spread of infections. Finally, by
comparing infection peaks across scenarios with and without behavioral interven-
tions, we highlighted the tangible benefits of public adherence to recommended
preventive measures. These explorations collectively affirm the multifaceted ap-
proach needed in managing infectious diseases, emphasizing the synergy between
vaccination efforts and public behavior in controlling and eventually overcoming
disease outbreaks.

Plot in Figure 6 shows the number of infections over a year with different levels
of vaccination coverage (10%, 50%, and 90%). As expected, higher vaccination
coverage significantly reduces the peak and spread of infections, demonstrating
the importance of vaccination in controlling an outbreak.

Plot in Figure 7 examines the effect of different levels of public caution on
disease spread, modeled by caution parameters of 0.5, 1, and 2. A higher caution
parameter, indicating increased preventive behaviors by the population, results in
a lower peak of infections and a delayed outbreak, highlighting the effectiveness of
public health measures and behavioral adjustments.

Plot in Figure 8 compares the progression of the disease in scenarios with no
interventions versus those with behavioral interventions, such as increased public
caution. It clearly illustrates that behavioral interventions can significantly reduce
the peak and overall number of infections, underscoring the critical role of public
behavior in managing infectious disease outbreaks.

The model effectively captured the rapid initial surge in both prevalence and
new daily infections, subsequently transitioning into a consistent prevalence rate.
The mortality pattern echoes that of the prevalence, suggesting a delay between
the spike in infections and ensuing deaths. Without any intervention measures, the
epidemic achieves equilibrium, with the prevalence stabilizing post the initial swift
increase. Cumulatively, these outcomes affirm the model’s proficiency in emulating
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Fig. 6: Effect of Varying Levels of Vaccination Coverage on Disease Spread Over
Time.

Fig. 7: Impact of Caution Parameter on Disease Spread Dynamics.
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Fig. 8: Comparison of Infection Peaks with and without Behavioral Interventions.

the dissemination of infectious diseases under conditions of minimal behavioral
response, and a lack of intervention measures, offering crucial understanding of
the epidemics behavior and trajectory.

In the results of Vaccine dynamics, studying these methods to curb virus spread
is a critical focus in the field of epidemiology. Among these, vaccination initia-
tives stand out as key societal measures for halting infectious disease proliferation.
Grasping how well these strategies work is essential to evaluate the accuracy and
reliability of the epidemiological model.

Graphs in Figure 9 help in understanding how increasing vaccination coverage
impacts both the magnitude of these health metrics and the timing of when these
maximum values occur. As vaccination coverage increases, there’s a clear trend of
decreasing max values for all metrics, indicating the effectiveness of vaccination
in controlling the disease. Additionally, the timing (day of occurrence) for maxi-
mum deaths shifts significantly with higher vaccination coverage, highlighting the
changing dynamics of the disease spread and mortality as more of the population
becomes vaccinated. The impact of increasing vaccination coverage on the spread
of an infectious disease, showing a clear decline in the maximum values of preva-
lence, new daily cases, and deaths as coverage expands from 10% to 90%. At the
lowest coverage, prevalence peaks at 1821 cases by day 21, with new daily cases
and deaths reaching their maxima shortly before and much later, respectively. As
vaccination coverage grows, not only do these numbers decrease significantly, but
the peak days for new cases tend to occur earlier, while for deaths, they shift
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Fig. 9: ”Max Value” reached by each metric (Prevalence, New Daily Cases, Deaths)
across different vaccination coverage levels (left), and ”Day of Occurrence” for the
maximum values of each metric, again across varying levels of vaccination coverage
(right).

variably. By the time coverage reaches 90%, the maximum prevalence plummets
to 151, new daily cases drop to 26, and deaths reduce to 21, demonstrating the
efficacy of vaccinations in controlling the outbreak.

Fig. 10: Relationship between increasing vaccination coverage and its impact on
disease metrics within a population of 30,000 individuals.

Plot in Figure 10 shows the ”Max Value (%)” for each metric (Prevalence, New
Daily Cases, Deaths) across different caution parameters. The x-axis represents
the caution parameters on a logarithmic scale to better visualize the wide range of
values, while the y-axis shows the maximum value as a percentage of the highest
value observed within each metric category. This visualization helps in comparing
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the relative changes in prevalence, new daily cases, and deaths as the caution
parameter increases.

Fig. 11: Relationship between increasing vaccination coverage and its impact on
disease metrics within a population of 30,000 individuals.

In Figure 11 a plot concerning the impact of different percentage of the popu-
lation that has been vaccinated on disease metrics is reported. The data points are
spread across five key vaccination coverage milestones: 10%, 30%, 50%, 70%, and
90%. In particular, the maximum number of individuals affected by the disease
(Y-axis) plotted for each of the vaccination coverage percentages (X-axis) is repre-
sented. It is the count of individuals who are either currently infected (Prevalence),
newly infected (New Daily Cases), or have died due to the disease (Deaths) on the
day when the maximum value was observed. Prevalence (Blue Line): This line
indicates the maximum number of active disease cases at any given point within
the population, on the days when the peak prevalence was observed. It shows a
clear declining trend, indicating that as vaccination coverage increases, the preva-
lence of the disease decreases. New Daily Cases (Orange Line): This line tracks the
maximum number of new infections reported daily. Similar to prevalence, there is
a notable decrease in new daily cases as the vaccination coverage grows. Deaths
(Green Line): This line reflects the peak number of deaths recorded in a single day.
It also shows a downward trend, which suggests that higher vaccination rates are
associated with lower mortality on the day when the maximum deaths occurred.
In the context of the case study, the introduction of a ”Caution Parameter” en-
hances the model of disease spread by accounting for human behavior in response
to infection rates. This parameter operates through a mathematical formula where
Ψ(f) signifies the adjusted probability of infection based on the current fraction of
infected individuals, f, relative to a threshold fraction, f*. The threshold fraction,
f*, represents a critical level of infection that triggers a heightened level of cau-
tion among the population, effectively reducing the infection probability by half.
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Essentially, this mechanism transitions a simplistic probabilistic model into a nu-
anced stochastic one, where the infection dynamics are modulated not just by the
raw infection rates but also by the population’s adaptive response to the spread of
the infection. This adaptive response, governed by the value of f*, implies that a
smaller fraction of infected individuals could lead to a significant behavioral shift
towards reducing infection risks, thus influencing the overall spread of the disease
in a realistic and complex manner.

5 Discussion

Produced data presents the results of a study exploring the impact of varying levels
of public caution and vaccine coverage on three key epidemiological metrics: preva-
lence, new daily cases, and deaths, within a population with no vaccine coverage.
The ”Caution Parameter” represents a numerical value assigned to the popula-
tion’s level of caution or preventive measures taken to avoid infection. A higher
value signifies greater caution and, presumably, more robust preventive behaviors.

As a consequence, at the lowest level of caution (0.02), the impact on disease
spread and outcomes is minimal, with relatively high percentages in prevalence
(37.64%), new daily cases (35.86%), and particularly high in deaths (90.16%).
This suggests that without significant behavioral changes or interventions, the
population experiences substantial impacts from the disease.

Increasing the Caution Parameter to 0.2 shows a dramatic increase in all met-
rics, indicating that even moderate increases in public caution can have a sig-
nificant effect on disease outcomes. Prevalence and new daily cases rise sharply,
indicating a widespread outbreak, but deaths increase at a slower rate (77.78%),
suggesting that increased caution might somewhat mitigate the severity of out-
comes. At a Caution Parameter of 1, there is a notable shift; while prevalence and
deaths increase, with prevalence nearly reaching the entire population and deaths
at 93.02%, new daily cases hit 100%. This point might represent a critical thresh-
old where the population caution has a maximized effect on slowing the spread,
albeit with a significant portion of the population already affected.

The most extreme caution level analyzed, 10, results in the maximum values for
prevalence and deaths, both reaching 100%, while new daily cases slightly decrease
to 96.26%. This could indicate a scenario where extreme caution is enacted too
late, after the disease has already spread extensively, or it could reflect a situation
where extreme caution leads to effective control of new cases, but the overall
impact of the disease remains high due to previous spread, and in-between public
behavior (as quantified by the Caution Parameter) and disease dynamics in the
absence of vaccination. It suggests that while increased caution can significantly
affect disease spread and mortality, there is a nuanced balance between the timing
and intensity of these behavioral changes and their ultimate impact on disease
outcomes. These findings highlight the importance of timely and proportionate
public health responses in managing infectious disease outbreaks.
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6 Conclusion and future work

This study advances an evidence in the literature about the potential of Membrane
Systems in epidemiological modeling, by establishing an integrated framework that
aptly represents disease transmission dynamics and intervention effectiveness, con-
sidering behavioral influences. The simulation results underscore the necessity of a
holistic approach to disease control, which is essential for crafting effective public
health strategies in response to infectious disease threats.

A future work could consider the model extension to other infectious diseases
and in genereal global scenarios. Indeed, the current model has been extensively
applied to the context of COVID-19. A valuable extension would be to adapt and
apply this model to other infectious diseases, such as influenza, Ebola, or even an-
timicrobial resistance, which present different transmission dynamics and societal
impacts. Additionally, incorporating geographical variations and cultural differ-
ences in human behavior across different global regions could provide insights into
disease spread and control measures in a more diversified manner. This expansion
would involve adjusting the model parameters to suit different disease character-
istics and transmission modes, as well as integrating diverse behavioral responses
based on cultural norms. Beside, by utilizing real-time data, such as infection rates,
vaccination rates, and public mobility patterns from various sources like health de-
partments and mobile devices, the model could dynamically update and predict
disease spread scenarios more accurately.
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Summary. Spiking neural P systems, SN P systems in short, are membrane systems based on
the third generation of neuron models (spiking neurons). Recent results in neuroscience highlight
the importance of extrasynaptic activities of neurons, that is, features and functioning of neurons
apart from their synapses. Previously it was thought that signals such as neuropeptides only assist
neurons but such signals are given further importance more recently. Inspired by such recent results,
we introduce the idea of wireless SN P systems, or WSN P systems in short. In WSN P systems no
synapses exist, and we associate regular expressions for each neuron to decide which spikes it
receives. We provide two semantics of how to “interpret” the spikes released by neurons. A specific
register machine is simulated to show how different the programming style is with WSN P systems
compared to SN P systems and other variants. The programming style emphasises a trade-off: WSN
P systems can be more “flexible” in the sense that neurons are not limited by their synapses as before
for sending spikes; the loss of the useful and directed graph, however, requires careful design of the
rules and the regular expression associated with each neuron. For instance, in the present work we
make use of prime numbers to create the expressions and rules of the neurons.

Keywords: Membrane computing, spiking neural P systems, extrasynaptic signalling,
neuropeptides
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1 Introduction

The present work introduces a variant of spiking neural P systems, in short SN P sys-
tems. SN P systems introduced in [1] are inspired by spiking neurons and their network:
the processors are neurons which are the nodes in a directed graph; the edges are called
synapses, which allow the communication between neurons of a single object a referred
to as a spike; the neurons are spike processors which consume and produce spikes.

Some recent survey papers of SN P systems and variants include [2, 3] and more re-
cently in [4]. Since their introduction, it is known that SN P systems are Turing complete.
SN P systems can also solve NP-complete problems, trading time for space [5]. In the past
decade or so many variants of SN P systems have been introduced depending on specific
ingredients or features, mostly from biology. For instance the introduction of autapses [6],
synaptic plasticity [7], synaptic schedules [8], neurogenesis [9].

Besides theoretical works, simulators of SN P systems and variants are used to support
research or pedagogy, such as interactive and visual software in [10, 11] with the main
page in [12], and recent tutorial in [13]. Solutions to hard problems are also implemented
in parallel hardware such as in [14] which implements ideas from [15], with recent and
some state-of-the-art results in [16].

In the present work we introduce the idea of wireless SN P systems, or WSN P sys-
tems in short. One general reference for the bio-inspiration of WSN P systems is from
[17] with recent and detailed results from [18] and [19]. Briefly, such recent results em-
phasise the crucial and important role of neuronal activities outside of their synapses,
hence their wireless features and functions. Such recent works focus their attention on a
specific animal known as C. elegans.

The worm C. elegans is a model organism, that is, much is known about its biol-
ogy including its nervous system due to its “simplicity” of several hundred neurons only.
Despite the small size of this worm, its nervous system has interesting biochemical com-
plexity with structural features shared by larger animals [19]. Due to better techniques
and technology, more recently there are improved works to show how a wireless net-
work (that is, without synaptic wiring) among nerve cells or neurons is able to operate
[18, 19]. These recent works challenge the idea neurons communicate only or mainly
through anatomical connections, that is, through their synapses [17]. Such recent works
reveal new details of a connectome or wiring diagram among neurons, the neuropeptider-
gic connectome: a connectome which is equally important and perhaps more diverse than
the synaptic connectome.

Furthermore, these recent works identify neuropeptides, the chemical messages re-
leased by neurons, as the basis for such wireless network among neurons. Neurons in the
C. elegans worms can release neuropeptides, or have receptors for such neuropeptides.
The wireless network formed from these pairs of releasing and receiving neurons is dense
and decentralised, compared to the less dense and more centralised network of synapses
[19]. Such pairs are responsible for existence of the wireless network, which means that
neuropeptides are not simply random chemicals floating between neurons. Neuropeptides
affect the neural system over larger scales of time and space, unlike synaptic signals re-
stricted only to both sides of the synapse [19]
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Previously it was thought that neuropeptides only assisted in synaptic communica-
tion. However, these recent works indicate the ubiquitous, important, and direct role to
neuron activation of neuropeptides and the corresponding wireless network [17]. Neu-
ropeptides are conserved and ancient chemicals in brains of many organisms, including
humans brains, suggesting the pioneering work with C. elegans can at least reveal useful
structures or principles for brain function [18, 19]. For instance, a recent technique allows
to detect neuropeptides, which can assist in better understanding of both wired and wirless
networks of neurons including those for humans [20].

We use the recent results mentioned as inspirations for extrasynaptic functions of
neurons, that is, functioning without or outside the usual synapses. The contribution of
the present work is the introduction of wireless SN P systems. No synapses are present in
the neurons, while still using rules to consume and produce spikes. For each neuron we
associate a regular expression to decide what “forms” of spikes the neuron can receive.
We introduce two semantics for WSN P systems, based on the interpretation of the spikes
released at each step by the neurons: the spike package semantic considers the spikes as
individual packages as released by each neuron; the spike total semantic considers the sum
of spikes released by all neurons. We show how to programme a specific WSN P system
through the simulation of a specific register machine. Such a simulation emphasises the
rather different way to programme WSN P systems compared SN P systems and variants,
due to the associated expression for each neuron and the lack of synapses. In this way we
note that the directed graph structure of SN P systems and variants is a very useful feature.
Some “flexibility” is gained in the sense that the neurons are not limited to sending spikes
only to neurons where their synapses connect. However, losing the directed graph makes
the programming of the system more “involved” in the sense that more effort can be
required to design the rules of each neuron.

The present work is organised as follows: in the next Section 2 we provide in an
intuitive way an example of a WSN P system Π1. We examine the computations of Π1

under two semantics, the spike package and spike total semantics. In Section 3 we show
how a WSN P system can simulate a small and specific register machine to highlight the
rather different way to programme such systems. Lastly, in Section 4 we provide some
conclusions and directions for further work.

2 An example with two semantics

In this section we consider an example, the system Π1 shown in Figure 1. We use Π1

to elaborate two semantics about wireless SN P systems. Briefly, Π1 has 3 neurons, each
labelled with a pair (i, Ei) for 1 ≤ i ≤ 3. Each neuron has an associated regular expres-
sion to check what number of spikes it can receive. For instance, neurons σ1 and σ2 have
E1 = E2 = a which means they only receive spikes of the form a1 = a fired from other
neurons, including from σ1 itself. We note that the rule set of σ2 is empty, so later we see
the number of spikes inside it either remain the same or increase.

We omit the definition, syntax, and semantics standard to SN P systems. The reader is
referred instead for instance to the seminal paper [1], in open access tutorials or surveys
as in [21, 2], or the dedicated chapter of the handbook in [22].



68 D. Orellana-Martı́n et al.

a

r1 : a2/a → a2

r2 : a → a
(1, E1 = a)

a

(2, E2 = a)
a2

r3 : a2 → a
r4 : a2 → a2

(3, E3 = a2)

Fig. 1: Π1 is an example of a wireless SN P system.

2.1 Semantic 1: spike package

The semantic 1 we first consider, which we refer to as spike package semantic, considers
only in spikes arriving in “packages” sent by neurons in the environment. Consider two
neurons which fire at the same step t: let neuron σi and σj have regular expressions
Ei = am and Ej = an associated, respectively, for n,m ≥ 1; neuron σi and σj fire an

and am spikes at step t, respectively. At the next step t + 1, neuron σi receives the am

spikes from neuron σj , and vice-versa. That is, while at step t there is a total of n + m
spikes in the environment due to the firing of both neurons: in spike package semantic we
only consider packages or groups of the spikes and not the total spikes in the environment.
We consider the spike total semantic as semantic 2 in Section 2.2 later.

Let us now apply the spike package semantic to the system Π1 in Figure 1. To help
with clarifying the computation of Π1 we refer to the configuration tree in Figure 2 under
spike package semantic.

The initial configuration of Π1, according to the total ordering of 1, 2, and 3 of the
neurons, is C0 = ⟨1, 1, 2⟩. That is neurons 1, 2, and 3 each have 1, 1, and 2 spikes,
respectively. Due to C0 and the nondeterminism in Π1 found only in neuron σ3, there is
a choice between applying rule r2, and either r3 or r4.

If rule r2 is applied one spike is consumed in neuron σ1, and sent to both σ1 and
neuron σ2 due to their associated regular expressions E1 = E2 = a. Applying r3 means
σ3 consumes two spikes but produces only one spike. Again the single spike from σ3

arrives at σ1 and σ2 due to their regular expressions. Hence, we have the transition C0
r2r3=⇒

C1,0 = ⟨2, 3, 0⟩, that is, by applying r2 and r3 we obtain configuration C1,0 from C0.
Consider now if we apply r2 and r4 instead. The effect applying of r2 is still to return

a spike to σ1 and to increase the spikes in σ2. The effect of r4 is reflexive, that is, in neuron
σ3 two spikes are consumed and then returned to itself since E3 = a2. Hence, we have the
transition C0

r2r4=⇒ C1,1 = ⟨1, 2, 2⟩, that is, by applying r2 and r4 we obtain configuration
C1,1 from C0.

As seen in the configuration tree in Figure 2, each branch of computation of Π1 is
nonhalting, that is, Π1 always arrives at a configuration where some rule is applied. The
number of spikes in neuron σ2 continue to increase. More precisely, we have transition
⟨2, b, 0⟩ r1=⇒ ⟨1, b, 2⟩, transition ⟨1, b, 2⟩ r2r3=⇒ ⟨2, b + 2, 0⟩, or transition ⟨1, b, 2⟩ r2r3=⇒
⟨1, b+ 1, 2⟩ for some b ≥ 1.
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⟨1, 1, 2⟩

⟨2, 3, 0⟩ ⟨1, 2, 2⟩

⟨1,3,2⟩ ⟨2, 4, 0⟩ ⟨1,3,2⟩

⟨2,5,0⟩ ⟨1,4,2⟩ ⟨1,4,2⟩

⟨1,5,2⟩ ⟨2, 6, 0⟩ ⟨1,5,2⟩

...
...

...

r2 r3

r2 r4

r1
r2r3

r2r4

r2r3
r2r4 r1

r1 r2r3
r2r4

r2r3 r2r4 r1

Fig. 2: A tree of configurations of Π1 in Figure 1 using semantic 1 (spike package seman-
tic). The initial configuration is ⟨1, 1, 2⟩. Except for ⟨1, 1, 2⟩, each node in the tree is a
next configuration by applying the rules labelling the connecting edge. Nodes or configu-
rations in bold are nodes repeated elsewhere in the portion of the tree shown.

2.2 Semantic 2: spike total

We continue the same notation at the start of Section 2.1 to consider the total spike seman-
tic. Recall we have neurons with labels and their associated expressions as σi = (i, Ei =
am) and σj = (j, Ej = an) for n,m ≥ 1. At step t neurons σi and σj fire n and m
spikes, respectively. Thus we have a total of n+m spikes in the environment. In the next
step t+ 1, no neuron receives any spikes since an+m /∈ L(Ei) and an+m /∈ L(Ej). That
is, none of the regular expressions of both neurons describe the total number of spikes in
the environment.

Consider now the same SN P system Π1 from Figure 1 but under the total spikes
semantic. The configuration tree of Π1 is now given by Figure 3. From the same initial
configuration C0 = ⟨1, 1, 2⟩ the computation proceeds in a different way. The transition
C0

r2r4=⇒ C1,1 = ⟨0, 1, 0⟩ is a halting configuration, that is, no more rules can be applied in
Π1. Only the subtree with transition C0

r2r3=⇒ C1,0 = ⟨0, 1, 2⟩ continues to infinitely grow
the number of spikes in neuron σ2. Actually after configuration C2,0 = ⟨1, 2, 0⟩ only rule
r2 can be applied in a nonhalting computation.

We note that the effect of applying rules r2 and r4 from C0 is to release a total of a3

spikes in the environment followed by the halting of Π1. Since we use the total spikes
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semantic no neuron receives these spikes in the next step because no neuron has an ex-
pression which includes a3.

⟨1, 1, 2⟩

⟨0,1,2⟩ ⟨0, 1, 0⟩ (HALT)

⟨1, 2, 0⟩ ⟨0,1,2⟩

⟨1, 3, 0⟩

⟨1, 4, 0⟩

...

r2 r3

r2 r4

r3

r4

r2

r2

r2

Fig. 3: Configuration tree for Π1 in Figure 1 using semantic 2 (total spikes semantic). As
in Figure 2, edges between nodes (configurations) are labelled by the rules applied from
the source to destination nodes. Also, configurations in bold means they are repeated
elsewhere in the tree.

3 Programming WSN P systems

Let us consider a small programme with some register machine M to give us an idea how
to programme a WSN P system, including their similarities and differences with SN P
systems and their other variants. It is known that register machines compute the set of all
Turing computable sets of numbers [23]. We do not go into the details of register machines
here, and refer the reader instead to [23] as well as to [1, 22] for the usual style of proofs
with register machines. Consider the following instructions of a register machine M :

l1 : (SUB(r1), l2, l3),
l2 : (ADD(r1), l1, l3),
l3 : HALT.

We simulate the instructions of M using a WSN P system ΠM with the following details.
We map prime numbers to elements of M and use the mapping as addresses in ΠM . The
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idea of addresses and simulation is made clear in a moment. In general, for elements of
any register machine we use the total order l1, l2, . . . , r1, r2, . . .. Specific to M we have
the following mapping of its elements to prime numbers:

pl1 = 7, pl2 = 11, pl3 = 13, pr1 = 17.

That is, starting from instruction l1 of M we map it to the prime number pl1 = 7,
followed by mapping l2 and l3 to pl2 = 11 and pl3 = 13, respectively. After mapping
prime numbers to all instructions of M , we map the next prime numbers to registers:
there is only one register in M mapped to pr1 = 17.

In general, the mapping we use for the content of register ri = n is having a2pri
n

spikes in the neuron σri . Following the mapping of prime numbers above to elements of
M : if r1 = n the associated neuron σr1 has a2pr1n = a2(17)n spikes.

3.1 Simulating a SUB instruction

Now we provide the SUB module of ΠM to simulate instruction l1 of M . The SUB
module consists of the following neurons and their contents. We note that the contents of
a neuron σi = (an, Ri, Ei) consists of its initial number of n spikes, its rule set Ri, and
the associated regular expression Ei.

σl1 = (a7, Rl1 , El1 = a7),

σaux1,1
= (λ,Raux1,1

, Eaux1,1
= a2(17)(a17)

+
),

σr1 = (a2(17)n, Rr1 , Er1 = a17 ∪ a2(17)).
The rule sets of each neuron we list as follows.

Rl1 = {a7 → a7(17)},
Raux1,1

= {a7(17)/a7(17−1) → a17, a7+3(17) → a11, a7+5(17) → a13},
Rr1 = {(a2(17))+a17/a3(17) → a3(17), a17 → a5(17)}.

The rules in each rule set are written in an explicit way with their superscripts, to make it
easier to see the idea of the simulation. For instance, in simulating instruction l1, neuron
σl1 has only one rule releasing apl1

(pr1
) = a7(17) spikes to mean the following: the source

of spikes is σl1 with σr1 as destination. To simulate the next instruction, neuron σaux1,1

releasing either pl2 = 11 or pl3 = 13 spikes means the destination neuron is either σl2 or
σl3 , respectively.

Now we simulate instruction l1 of M by the SUB module of ΠM as follows. Consider
a total order of neurons in the SUB module of ΠM as σl1 , σaux1,1 , σr1 . From the above
description, the initial configuration at time step t = 0 of the total order is given by
C0 = ⟨7, 0, 2(17)n⟩.

At step t = 1, the a7 spikes in neuron σl1 start the computation by applying the single
rule in the neuron: all pl1 = 7 spikes are consumed and 7(17) = pl1(pr1) spikes are
produced. The reason for 7(17) spikes is to indicate that instruction l1 sends its spikes
to perform subtraction operation on register r1. At step 1 have the configuration C1 =
⟨0, 7(17), 2(17)n⟩. When the spikes have been sent, only the auxiliary neuron σaux1,1

receives the spikes from σl1 since only the regular expression associated with σaux1,1

makes a match. That is, we have a7(17) ∈ L(Eaux1,1).
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At step t = 2, only the rule a7(17)/a7(17−1) → a17 of σaux1,1
is applied: it consumes

7(17 − 1) spikes and produces 17 spikes is received only by neuron σr1 . At step 2 we
have the configuration C2 = ⟨0, 7, 2(17)n+ 17⟩.

At step t = 3 only neuron σr1 can apply a rule. Depending on the value of n in register
r1 of M , we have the following two cases:

1. if n > 0, this means that before t = 2, neuron σr1 has 2(pr1)n = 2(17)n ≥ 34
spikes. Let n = 1. Then, receiving 17 spikes means the total spikes in σr1 at step
t = 2 is 17 + 34n = 51 spikes.
The first rule of σr1 is applied since a51 ∈ L((a2(17))+a17). Applying the rule con-
sumes 3(17) spikes, no spikes remain in σr1 since 51 − 3(17) = 0. In this way, as
the number in register r1 is reduced from n to n − 1, the number of spikes in σr1 is
reduced from a2(17)n to a2(17)(n−1). The rule also produces a3(17) spikes which in
step t = 4 only σr1,1 receives.
At the moment t = 4 the configuration is C4 = ⟨0, 7+3(17), 2(17)(n−1)⟩ and only
σr1,1 can apply a rule: the neuron applies the rule a7+3(17) → a11 to consume all of
its spikes and to activate the next module to simulate instruction l2 associated with
pl2 = 11.

2. if n = 0, before step t = 2 neuron σr1 has no spikes. Receiving 17 spikes means
the total spikes in σr1 at moment t = 3 is 17 spikes: the neuron applies its rule
a17 → a5(17) to consume all spikes and send spikes only to σr1,1 . In this way, as the
number in register r1 is 0, the number of spikes in σr1 remains 0 also.
At the moment t = 4 the configuration is now C4 = ⟨0, 7+5(17), 0⟩, with only σr1,1

applying a rule: the rule a7+5(17) → a13 is applied, consuming all spikes. At the next
step the simulation of instruction l3 associated with pl3 = 13 begins.

Thus, the subtraction instruction l1 of M is correctly simulated: if register r1 contains
a nonzero value it is decremented and the next instruction is l2, otherwise r1 remains zero
and l3 is the next instruction. We note that there is no interference in the case when there is
more than one subtraction instruction associated with r1. The mapping of prime numbers
over a total ordering on M described above, and the “addresses” of each neuron based on
the mapping allows no wrong simulation. Such addresses we use not only in the regular
expressions associated with each neuron, but also in the spikes released by each neuron.

3.2 Simulating an ADD instruction

This section is devoted to the ADD module of ΠM to simulate instruction l2 of M pro-
vided at the start of Section 3. The ADD module consists of the following neurons and
their contents. For simulating this, we must include new rules in Raux1,1

σl2 = (λ,Rl2 , El2 = a11),
The rule sets of each neuron we list as follows.

Rl2 = {a11 → a11(17)},
Raux1,1

= Raux1,1
∪ {a11(17)/a11(17−1) → a2(17), a11 → a7, a11 → a13}

Let us suppose that, at step t = k, a11 spikes arrive to neuron σl2 . Then, the simulation of
the instruction l2 starts. Consider a total order of neurons in the ADD module of ΠM as



Neurons on Wi-Fi 73

σl2 , σaux1,1
, σr1 . From the above description, the configuration at the time t = k neuron

σl2 receives a11 spikes of the total order is given by Ck = ⟨11, 0, 2(17)n⟩.
At step t = k + 1 the a11 spikes in neuron σl2 start the simulation by applying the

single rule in the neuron: all pl2 = 11 spikes are consumed and 11(17) = pl1(pr1)
spikes are produced. Similar to the SUB instruction, the reason for 11(17) spikes is to
indicate that instruction l2 sends its spikes to perform addition to register r1. When the
spikes have been sent, only the auxiliary neuron σaux1,1

receives the spikes from σl1

since only the regular expression associated with σaux1,1
makes a match. That is, we have

a11(17) ∈ L(Eaux1,1).
At step t = k + 2, only the rule a11 → a11(17) of σaux1,1 is applied: it consumes

11(17 − 1) spikes and produces 2(17) spikes. Only neuron σr1 will receive the spikes.
Thus, Ck+2 = ⟨0, 11, 2(17)(n+ 1)⟩.

At step t = k+ 3, both rules a11 → a7 and a11 → a13 are applicable, so one of them
is selected in a non-deterministic way. If the first one is applied, a7 spikes are be fired,
matching with the regular expression of neuron σl1 . Otherwise, rule a13 spikes are sent to
neuron σl3 mapped to pl3 = 13. In the first case, the SUB instruction is simulated again,
while in the second case the output must be produced followed by the halting of ΠM .

Thus, the addition instruction l2 of M is correctly simulated: the value of register
r1 is augmented by 1 and the next instruction is selected from the set {l1, l3} in a non-
deterministic way. No interference with rules from the SUB instruction is found. The
regular expressions always match with the prime number pl2 corresponding with instruc-
tion l2. That is, pl2 spikes are never released while simulating the SUB instruction.

Before we end the present section on programming ΠM to simulate M we make a
few more notes. First we omit the explicit simulation of instruction l3 to halt M . In ΠM ,
simulating a halt instruction requires the release of the output to the environment. In the
above description of ΠM we assume the use of spike package semantic as in Section 2.1.
It seems to be the case that ΠM as described above can still simulate M under the spike
total semantic in Section 2.2.

4 Final remarks

We introduced yet another variant of SN P systems we refer to as wireless SN P systems,
or WSN P systems in short. Several kinds of novelty can be found in WSN P systems. The
further movement away from a fixed or static graph motivated especially by recent and
exciting discoveries in neuroscience. That is, our increasing knowledge of extrasynaptic
signalling, of neuropeptides and their important influence in neuronal activities. WSN
P systems go against the traditional directed graph used in neural systems or networks,
introducing two semantics how the “floating” spikes are received. We associate regular
expressions to each neuron allowing neurons to distinguish which spikes to accept or
reject. Both semantics, the spike partial and spike total, are bio-inspired. The semantics
also bear some resemblance to packets of data among networks of computers that connect
for instance wireless networks and the Internet.

The use of forgetting rules of the form as → λ, are common to SN P systems and
many variants. Forgetting rules are used to remove spikes without producing spikes, but
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such rules may not be necessary in WSN P systems. A way to avoid such rules is to use a
rule as → ax where x is not found in any regular expression of any neuron. In this way
we still remove the s number of spikes, but more care needs to be given using the spike
total semantic (Section 2.2). The output neuron mentioned at the end of Section 3.2 needs
to be a distinguished neuron, in order to obtain the output of the system.

In many variants of SN P systems the delay feature is common: there can be a nonzero
delay from releasing a spike and the spike arriving to another neuron. It is known, see e.g.
[24], that the delay feature is not required for universality, but can be useful for instance
in modelling [25]. It is interesting to see the role of delays in WSN P systems. Other
common features of SN P systems and variants include the lack of reflexive synapses, and
restricting the produced spikes of a neuron to be at most the consume spikes. A variant
known as SN P systems with autapses allows reflexive synapses although this variant has
a static and directed graph [6]. For restricting the produced spikes to be less or equal to the
consumed spikes, perhaps this can be achieved by using more time in the computation,
and more neurons to generate the required spikes.

Regarding the semantics in Section 2, it is interesting to see which types of problems
or computations one semantics has an advantage over the other. As seen in the configura-
tion trees in Figure 2 and Figure 3, for the same Π1 the computations are rather different.
Another interesting extension or semantic for WSN P systems is the idea of decay or “at-
tenuation” of spikes: it is assumed that spikes (especially if delays are introduced) can
“float” without change for an arbitrary duration in time or distance in space between neu-
rons. It is interesting to introduce such decay or attenuation in WSN P systems, similar
to decay of electromagnetic signals used in wireless networks of computers. Previously,
decaying spikes were considered in SN P systems [26].

In programming ΠM we notice its operation is sequential, that is, at each step at most
one neuron applies a rule. The sequential restriction or normal form has been applied to
SN P systems as early as in [27], and more recently with variants having dynamic topolo-
gies in [28, 29]. It is interesting what kinds of restrictions and computations can(not) be
obtained when more parallelism is involved in the system in terms of neurons, rules, etc.

Another interesting direction is to consider matrix representations of WSN P systems,
as done with SN P systems in [30] and more recently in [31, 11]. Such representations al-
low for faster simulations, such as parallel processors [16, 32] web browsers [10, 11, 33],
and their automatic design [34, 35]. The related variant with matrix representation seems
to be SNPSP systems in [36]. SNPSP systems introduce plasticity to allow adding or
removing of synapses, introduced in [7]. Another variant known as SNP systems with
scheduled synapses (in short, SSNP systems) has synapse dynamism, by assigning sched-
ules or (range of) time steps when synapses exist or not. Besides SNPSP systems and
SSNP systems, another related variant are extended SN P systems in [37] which also have
no fixed and directed graph structure. It is also interesting to consider WSN P systems in
the formal framework of [38] for membrane systems and related models.

A few other lines of investigation on computing power to consider are the following.
Computing languages with WSN P systems, for instance in [39, 40]. Providing “small”
WSN P systems as in [41, 42]. Normal forms such as restricting the types of regular
expressions, with optimal results in [24]. In the case of WSN P systems not only are there
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expressions in rules but also those associated with the neurons. Creating homogeneous
systems as in [43, 44] is also worth investigating: the expressions associated for some
neurons must be distinct but not for others; also the number of produced spikes may need
to be heterogeneous for some rules, unlike previous works on homogeneous SN P systems
where each neuron has the same rule set.

Besides computing power, computing efficiency is interesting to consider with WSN P
systems. For instance how to solve NP-complete problems in a (non-)uniform way [45, 5].
An interesting extension is the feature to allow creation of new neurons as in [9, 46]
or using the idea of pre-computed resources [47]. Real world applications can perhaps
benefit from WSN P systems with neurons having the ability to “distinguish signals”
using their associated expressions. Applications may include improvements on intrusion
detection [48] and skeletonizing images [49]. More directions and open problems can be
derived from [2, 4].

We end the present work by highlighting, based on the ideas here presented, that
the directed graph structure of an SN P system seem to be powerful, at least useful, in
programming the system. Losing such directed graph as shown in WSN P systems we
need to use regular expressions for each neuron. Besides, here we use a mapping of prime
numbers for simulating a register machine: a rather unconventional way of simulation
at least in terms of the usual way of simulating register machines with such membrane
systems. These ideas show that the programming of WSN P systems are quite different
and interesting compared to SN P systems and their many variants.
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sentation of spiking neural p systems. In: Membrane Computing: 11th International Confer-
ence, CMC 2010, Jena, Germany, August 24-27, 2010. Revised Selected Papers 11, Springer
(2011) 377–391

31. Adorna, H.N.: Matrix representations of spiking neural p systems: Revisited. arXiv preprint
arXiv:2211.15156 (2022)

32. Aboy, B.C.D., Bariring, E.J.A., Carandang, J.P., Cabarle, F.G.C., De La Cruz, R.T., Adorna,
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Summary. In this work, we present an extension of the matrix representation for virus
machines. Structures such as vectors and matrices are useful in practical and theoretical
domains. Given the matrix representation of virus machines, the computations of such
machines can be expressed in terms of linear algebra operations. Previously, the matrix
representation was for deterministic machines only. Presently, we provide a virus machine
to nondeterministically generate the set of all natural numbers. We use the virus machine
for generating natural numbers to demonstrate the extension of the matrix representation.
Finally, we give some conclusions and directions for further work.
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1 Introduction

Virus machines (in short, VMs) are unconventional and bio-inspired models of
computing introduced in [1], inspired by the transmission of viruses in a network
of hosts. Since their introduction, VMs have been shown to be Turing complete,
that is, they can generate, accept, or compute functions over computable sets of
numbers [1, 2]. Arithmetic and pairing functions, as well as simulations of workflow
patterns have been investigated in the context of VMs [3, 4, 5].

Briefly, a VM is a heterogeneous graph consisting of 3 subgraphs: host graph,
containing hosts as nodes, with directed and weighted edges among hosts as chan-
nels, where hosts contain zero or more copies of the virus object v; instruc-
tion graph, where nodes are instructions to be activated, with directed and
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weighted edges between nodes identify which instruction to next activate; channel-
instruction graph, which connects one instruction node to at most one channel
between hosts. By default all channels between hosts are closed: if an instruction
i node is activated and i connects to a channel, the channel is opened and viruses
are transferred from the source to the destination host.

Previously in [6] a matrix representation for VMs was introduced with the
following idea, at some time instant t: the configuration, that is, the number of virus
objects in each host is represented by a vector; an instruction vector represents
the instruction activated at t; a virus transmission matrix of the VM dictates
the effect of each instruction (written as rows) to each host (written as columns).
Computations of the VM, that is, transitions from one configuration to the next,
are provided by linear algebra operations of such a representation.

Other bio-inspired models with matrix representations are spiking neural P
systems (SN P systems, in short) [7, 8], including other variants and optimisations
in [9, 10, 11, 12]. The matrix representations of SN P systems are used in their
automatic design, simulations, and verifications, see for instance [13, 11, 14, 15].

The present work extends the matrix representation of virus machines from
[6]. A new VM ΠNat for generating the set of natural numbers is presented. The
matrix representation from [6] applies to deterministic VMs only, while the present
work extends it to nondeterministic VMs. The VM ΠNat is used to demonstrate
the extension with the nondeterministic semantic.

The present work is organised as follows. Section 2 provides the basic defini-
tion, syntax, and semantics of VMs. A VM to perform addition, and a new and
nondeterministic VM ΠNat are included in Section 2. Section 3 defines the matrix
representation first for deterministic VMs, followed by the extensions of the rep-
resentation for nondeterministic VMs. Conclusions and ideas for further work are
provided in Section 4.

2 Virus Machines: Brief definition

In [1], Virus Machines were introduced as a universal model of computation, in the
sense that they can calculate every set computable by a Turing machine. While the
formal definition can be followed in the founding work, we remark on the syntax
here, while the semantics will be explained with an explicit example.

First, let us formally define the syntax of virus machines.

Definition 1. Let a virus machine Π of degree (p, q) with p, q ≥ 0 defined as:

Π = (Γ,H, I,DH , DH , GC , n1, . . . , np, i1, hout)

where:

• Γ = {v} is the singleton alphabet.
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• H = {h1, . . . , hp} is the ordered set of hosts, hout can be either in H or not
(for this work, we will suppose always hout /∈ H, I = {i1, . . . , iq} the ordered
set of instructions.

• DH = (H ∪ {hout}, EH , wH) is the weighted and directed (WD) host graph,
where the edges are called channels and wH : H ×H ∪ {hout} → N.

• DI = (I, EI , wI) is the WD instruction graph and wI : I × I → {1, 2}.
• GC = (EH ∪ I, EI) is a unweighted bipartite graph called channel-instruction

graph, where the partition associated is {EH ∪ I}.
• n1, . . . , np ∈ N are the initial number of viruses in each host h1, . . . , hp, respec-

tively.

Regarding the semantics, a configuration or an instantaneous description at
an instant t ≥ 0 is the tuple Ct = (a1,t, a2,t, . . . , ap,t, ut, a0,t) where for each j ∈
{1, . . . , p}, aj,t ∈ N represents the number of viruses in the host hj at instant t, and
ut ∈ I ∪ {#}. To clarify the notation, in this work it will be said as instantaneous
description and Ct will be noted as IDt, being ID0 = (n1, . . . , np, i1, 0) the initial
instantaneous description.

From an instantaneous description IDt, IDt+1 is obtained as follows. The
instruction that will be activated is ut if ut ∈ I, otherwise IDt is a halting con-
figuration. Let us suppose that ut ∈ I and that it is attached to the channel
(hj , hj′) ∈ EH with weight w ∈ N, then the channel is opened and two possibilities
holds:

• If aj,t > 0, then there is virus transmission, that is, one virus is consumed from
hj and is sent to the host hj′ replicated by w. The next activated instruction
will follow the highest weight path in the instruction graph. In case the highest
path is not unique, it is chosen nondeterministically. In case there is no possible
path, then ut+1 = #

• If aj,t = 0, then there is no virus transmission and the next instruction follows
the least weight path. For the other cases, it is analogous to the previous
assumption.

To clarify the behavior of these devices, we will show two specific examples.
The first one will be deterministic, and the other one will be nondeterministic.
These two examples will be reused for the following section. Before this, some
brief explanations of the function computing and number generating modes are
presented. For a more formal and detailed definition we refer to [4, 2].

2.1 Virus Machines computing functions: Addition function

A virus machine with input of degree (p, q, r) with p, q ≥ 1 and 1 ≤ r ≤ p is defined
as:

Π = (Γ,H,Hr, I,DH , DH , GC , n1, . . . , np, i1, hout),

where Π = (Γ,H, I,DH , DH , GC , n1, . . . , np, i1, hout) is a VM of degree (p, q),
and Hr ⊆ H is the ordered set of input hosts. For a given input (a1, . . . , ar) ∈ N,



82 A. Ramı́rez-de-Arellano et al.

the initial configuration of Π +(a1, . . . , ar) will be the addition to the input hosts
the values a1, . . . , ar respectively.

We say a partial function f : −Nr → N is computed by a VM with input
of degree (p, q, r) if for each input a⃗ ∈ N well defined in f , all the computations
of Π + a⃗ halt and returns f (⃗a), otherwise all the computations are non-halting
computations.

To clarify this, let Πadd be a VM [4] with input of degree (2, 3, 2) visually
represented in Figure 1. The hosts are drawn as squares, and instructions are
drawn as blue dots; the initial amount of viruses at each host is written inside
them. For simplicity, the weights of the arcs with weight 1 are omitted. Finally,
the instruction-channel graph is represented by red dotted lines.

a

h1

b

h2

i1 i2 i3

2 2

Fig. 1. The VM ΠAdd + (a, b).

A method to formally verify these devices is by looking for invariants that
highlight relevant loops of the device. For example, two invariants holds in this
machine:

φ(k) ≡Ck = (a− k, b, i1, k), for each 0 ≤ k ≤ a;

φ′(k) ≡Ck+a+1 = (0, b− k, i2, a+ k), for each 0 ≤ k ≤ b;

The first invariant φ shows that the a viruses are sent one by one from h1 to the
environment, in this whole process instruction i1 will be activated, as φ(a) is true,
the configuration Ca = (a− a, b, i1, a) is reached, due to the host h1 being empty,
the next instruction follows the least weight path, that is instruction i2. Leading
the configuration Ca+1 = (0, b, i2, a). At that instant, the second invariant φ′(k) is
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initialized, which represents the analogous computation, but with host h2 instead
of host h1. In particular, φ′(b) is true, then the following computation holds:

φ′(b) =Ca+b+1 = (0, b− b, i2, a+ b),

Ca+b+2 = (0, 0, i3, a+ b), as h2(0),

Ca+b+3 = (0, 0,#, a+ b).

Thus, after the a+ b+3 transition steps, the machine halts and returns a+ b,
which is the addition between (a, b).

2.2 Virus machines generating sets: Natural numbers set

VMs can be defined to generate sets of natural numbers; we say a number n ∈ N
is generated by a VM Π, if for a computation of Π the machine returns n. We say
that a subset A ⊆ N is generated by a virus machine Π if and only if for every
a ∈ A, the number a is generated by Π, and for any halting computation of Π,
the output belongs to the set A.

To clarify this, let Πnat be the VM of degree (2, 4) depicted in Figure 2 that
generates the set N \ {0}.

1

h1 h2
2

i1 i2 i3 i4

Fig. 2. The VM ΠNat.

To formally prove that the natural numbers set N is generated, let us see that
for each n ∈ N \ {0}, there exists a computation of Πnat that generates n. Let us
suppose that the number generated is n ∈ N \ {0}, then the invariant that holds
this machine is:

φ′′(k) ≡ C3k = (1, 0, i1, k), for each 0 ≤ k ≤ n− 1;

The invariant can be easily proved by induction. In particular φ(n) is true,
thus the following computation holds:
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φ′′(n− 1) ≡C3(n−1) = (1, 0, i1, n− 1),

C3(n−1)+1 = (0, 2, i2, n− 1),

C3(n−1)+2 = (1, 1, i3, n− 1),

C3n = (1, 0, i4, n), nondeterministic decision,

C3n+1 = (1, 0,#, n),

Thus, after 3n+ 1 transition steps, the machine halts and returns n.
To demonstrate that each halting computation of Πnat is in N \ {0}, we only

have to prove that for any halting computation of Πnat, the output is greater than
zero. For this, let us highlight the fact that at the instant t = 3, only two possible
computations arise: C3 = (1, 0, i1, 1) or C3 = (1, 0, i4, 1). In both cases, one virus
has been sent to the environment, as it cannot decrease, the output will be greater
than zero. Thus, VM Πnat generates the set N \ {0}.

3 Matrix Representation

In this section the matrix representation is formally defined for deterministic virus
machines, after that, the first ideas on the matrix representation of the nondeter-
ministic virus machines are presented.

3.1 Determinism case

Regarding the semantics of a VM, for any step or instant t ≥ 0, the instantaneous
description ofΠ is IDt = (a1,t, a2,t, . . . , ap,t, ut, a0,t), where each ai,t is the number
of viruses in the host hi, the instruction ut is next activated, and the environment
contains a0,t viruses.

For the following definitions, consider a VM Π of degree (p, q), with the nota-
tion fixed above and in Definition 1, at any instant t of its computation. We note
that definitions and results in the present section for the deterministic case are
from [6].

Definition 2 ([6]). We define the configuration vector as the vector

−→c t = ⟨a1,t, a2,t, . . . , a0,t⟩,

and the instruction vector as the vector

−→
i t = ⟨r1,t, r2,t, . . . , rq,t⟩,

where rm,t = 1 if ut = im ∈ I, otherwise rm,t = 0, for 1 ≤ m ≤ p. That is, if
the activated instruction is ij ∈ I, then the component rj,t is the only non-zero

element of
−→
i t.

In particular, vector −→c 0 = ⟨n1, n2, . . . , np 0⟩, and −→
i 0 = ⟨1, 0, . . . , 0⟩, is the initial

configuration vector and initial instruction vector, respectively.
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Definition 3 ([6]). A virus transmission matrix of Π is defined as

MΠ = [mk,j ]q×p+1,

where

mk,j =

−1, if instruction ik activates to remove a virus from host hj ,
w, if hj (or the environment) receives w viruses when ik activates,
0, otherwise.

Let us apply Definition 2 and Definition 3, to the deterministic ΠAdd in Figure

1 of Section 2.1. We have −→c 0 = ⟨a, b, 0⟩ and −→
i 0 = ⟨1, 0, 0⟩, to mean the following:

hosts h1 and h2 have a and b viruses, respectively, and the environment is empty,
with instruction i1 first activated. The virus transmission matrix MΠAdd

of ΠAdd

is given by Equation 1.

MΠAdd
=

−1 0 1
0 −1 1
0 0 0

 (1)

The idea of the virus transmission matrix MΠsub
is to show the effects of the

instructions (the rows) to the hosts and environment (the columns). For instance,
row 1 of MΠAdd

shows that i1 has no effect (hence the 0 element) on column 2 (for
h2). The effect of i1 is to remove 1 and add 1 virus each to h1 and the environment,
respectively. Similarly, row 2 shows that i2 removes and adds one virus to h2 and
the environment, respectively, but has no effect on h1. Lastly, i3 leads to halting
as no other instructions follow it.

Definition 4 ([6]). The instruction control matrices are matrices defined as

MI,1 = [ak,j ]q,q, and MI,2 = [bk,j ]q,q,

where

ak,j =

{
1, if (ik, ij) ∈ EI and wI((ik, ij)) = 1,
0, otherwise.

bk,j =

{
1, if (ik, ij) ∈ EI and wI((ik, ij)) = 2,
0, otherwise.

To obtain the configuration transition equation and the instruction
transition equation, we need to compute some partial results. Depending on
the existence or not of a virus in the origin host, the next configuration is changed
or not, respectively.

Define the following partial configuration vectors

−→c ′
t =

−→
i t ·MΠ ,−→c ′′

t = −→c t +
−→c ′

t,
−→c ′′′

t = −→c ′′
t Ip+1×p+2 (2)

where Ip+1×p+2 is the identity matrix with p + 1 rows and p + 2 columns, since
there is one column more than rows, the last column is filled with zeros. The idea
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behind each vector is: −→c ′
t is the vector to be subtracted from −→c t if there was

a virus in the origin host. −→c ′′
t is the result of the subtraction between −→c t and

−→c ′
t. If there exists a −1, then it means that there were no viruses present in the

origin host. We extend the vector −→c ′′
t with one more zero in the vector −→c ′′′

t for
the following technical detail: Let mt = min(−→c ′′′

t ) the control coefficient at
instant t, then mt is 0 if there was at least one virus in the origin host and −1
otherwise. To obtain the next configuration vector we have the following result.

Theorem 1 ([6]). Let Π be a VM with q instructions and p hosts, MΠ is the virus

transmission matrix, −→c t and
−→
i t are the configuration and instruction vectors at

instant t, respectively. We obtain the next configuration vector −→c t+1 using the
following transition equation:

−→c t+1 = −→c t + (1 +mt)
−→c ′

t.

Let us apply Definition 4, Theorem 1 to MΠAdd
. Given −→c 0 = ⟨a, b, 0⟩ and

−→
i 0 = ⟨1, 0, 0⟩ we have

−→c ′
0 =

−→
i 0 ·MΠsub

= ⟨−1, 0, 1⟩,−→c ′′
0 = −→c 0 +

−→c ′
0 = ⟨(a− 1), b, 1⟩,

with −→c ′′′
0 = −→c ′′

0 · I3×4 = ⟨(a− 1), b, 1, 0⟩. We also have m0 = min((a− 1), b, 1, 0, 0)
so that if a > 0 we have m0 = 0. The next configuration of ΠAdd is

−→c 1 = −→c 0 + (1 +m0) · −→c ′
0 = ⟨a, b, 0⟩+−→c ′

0 = ⟨(a− 1), b, 1⟩.

Let us now move to definitions to obtain the equation for the next instruction,
using mt defined above.
Let the partial instruction vectors and control sum be

−→
i t,1 =

−→
i t ·MI,1,

−→
i t,2 =

−→
i t ·MI,2,

−→
i ′
t =

−→
i t,1 + 2

−→
i t,2, st = i′t · 1q×1 (3)

st is the control sum at instant t, being 1q×1 a column vector with q ones. st
is a scalar number that has 4 possible values:

st =



0, if current instruction
−→
i t has no next instructions,

1, if current instruction
−→
i t has one next instruction,

2, if current instruction
−→
i t has two next instructions,

both of them with an arc of weight 1,

3, if current instruction
−→
i t has two next instructions, one with an arc

of weight 1 and one with an arc of weight 2,
(4)

If we restrict the VM Π to be deterministic (that is, st ̸= 2), we can define the
next instruction it+1 as follows:
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−→
i t+1 =

(1− st)(2− st)(3− st)

6

−→
i t,1 +

(−st)(2− st)(3− st)

−2

−→
i t,1+

+
(−st)(1− st)(2− st)

−6
(mt ·

−→
i t,1 + (1 +mt)

−→
i t,2)

(5)

If we simplify the terms for
−→
i t+1, the following result provides the next instruction

to be activated.

Theorem 2 ([6]). Let Π be a VM of degree (p, q), MΠ the virus transmission

matrix, MI,1 and MI,2, the instructions control matrices, −→c t and
−→
i t are the

configuration and instruction vectors at instant t, respectively. We obtain the next

configuration vector
−→
i t+1 using the following instruction control equation:

−→
i t+1 =

2− st
6

(((mt2)s
2
t + (5−mt)st + 3)

−→
i t,1 + st(1− st)(1 +mt)

−→
i t,2), (6)

where
−→
i t,j = MI,j

−→
i t, for j ∈ {1, 2}, mt and st are the control coefficient and

the control sum at instant t, respectively.

Remark 1. Theorem 2 is true if and only if Π is deterministic.

Let us apply the partial instruction vectors, st, and Theorem 2 to MΠAdd
. Now

s0 = 3 from equation 4 since the two arcs of i1 has a sum of 3 for their weights. Due
to s0 = 3 only the rightmost term of equation 5 is nonzero, and more specifically

the term with
−→
i 0,2, providing

−→
i 1 = 1 · −→i 0,2 = ⟨2, 0, 0⟩. The next instruction to

be activated is i1 again due to a > 0 at instant t = 0.

3.2 Non-determinism case

As we stated in Remark 1, the definitions and results presented in the previous
subsection are for deterministic virus machines, however, this computing paradigm
develops nondeterministic computing models, so it should be taken into account.
In this subsection we develop the first ideas on this purpose.

First, Theorem 1 remains true for nondeterministic behavior, as the non-
determinism comes from the instruction that will be activated in the following
step. Because of this, we will focus on Theorem 2.

For being the nondeterministic case at an instant t, it means that the high-
est/least weight path is not unique, that is the case st = 2, where the two possible

next instructions have an arc of weight 1. In addition,
−→
i t,1 has two non-zero com-

ponents and
−→
i t,2 is the zero vector. Keeping the same notation as before and

applying Theorem 2 the following equation holds:

−→
i t+1 =

2− st
6

(((mt2)s
2
t + (5−mt)st + 3)

−→
i t,1 + st(1− st)(1 +mt)

−→
i t,2),
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Evaluating the variables we have that
−→
i t+1 is the zero vector. To alleviate this

problem, we propose an extension of the equation by adding the following term
st(1−st)(3−st)

−2

−→
i t,1. Thus, the following Theorem holds:

Theorem 3. Let Π be a VM of degree (p, q), MΠ the virus transmission matrix,

MI,1 and MI,2, the instructions control matrices, −→c t and
−→
i t are the configuration

and instruction vectors at instant t, respectively. We obtain the next configuration

vector
−→
i t+1 using the following auxiliary instruction control equation:

−→
i ′′
t+1 =

2− st
6

(((mt2)s
2
t + (5−mt)st + 3)

−→
i t,1 + st(1− st)(1 +mt)

−→
i t,2)+

+
st(1− st)(3− st)

−2

−→
i t,1,

(7)

where
−→
i t,j = MI,j

−→
i t, for j ∈ {1, 2}, mt and st are the control coefficient and

the control sum at instant t, respectively.

The vector
−→
i ′′
t+1 is a binary vector that can be written as

−→
i ′′
t+1 =

∑
k∈K

ek,

where K ⊆ {1, . . . , q}, and ek is the corresponding euclidean basis vector. Then
instruction control equation holds:

−→
i t+1 = ek′ ,

where k′ is nondeterministically chosen from the set K.

Let us show the example presented in Subsection 2.2 to clarify this. First, we

have −→c 0 = ⟨1, 0, 0⟩ and −→
i 0 = ⟨1, 0, 0, 0⟩. The virus transmission matrix MΠnat is

given by Equation 8.

MΠnat =


−1 2 0
1 −1 0
0 −1 1
0 0 0

 (8)

As we said in the Subsection 2.2, at instant 3 a nondeterministic decision is
made, let us see how it works with the matrix representation. For that, let us see

the instant 2, we have
−→
i 2 = ⟨0, 0, 1, 0⟩, and −→c 2 = ⟨1, 1, 0⟩. From here we have the

following:

−→c ′
2 = ⟨0,−1, 1⟩,

−→c ′′
2 = ⟨1, 0, 1⟩,

−→c ′′′
2 = ⟨1, 0, 1, 0⟩.

Thus, m2 = 0. By Theorem 1, we have:
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−→c 3 = −→c 2 + (1 +mt)
−→c 2 = ⟨1, 0, 1⟩.

What is new here is how we obtain the following instruction vector. Here we
have the following:

−→
i 2,1 = ⟨1, 0, 0, 1⟩,
−→
i 2,2 = ⟨0, 0, 0, 0⟩,
−→
i ′
2 = ⟨1, 0, 0, 1⟩,
s2 = 2.

By the Theorem 3 we have
−→
i ′′
3 =

−→
i 2,1, which can be written as

−→
i ′′
3 = e1+e4 =

⟨1, 0, 0, 0⟩+ ⟨0, 0, 0, 1⟩. Thus, a nondeterministic decision arises choosing
−→
i 3 = e1

or
−→
i 3 = e4. That represents, exactly, the nondeterministic decision of going to i1

or i4 as expected.

4 Conclusion

In recent years, transforming or representing computing processes in linear algebra
operations has been a major scope because of their efficient implementations. In
this work, a matrix representation of virus machines has been presented with
two explicit examples, one with only the deterministic behavior, and the other
with nondeterministic behavior. It is interesting to note that this representation
opens an interesting framework for the invariants, which is crucial in the formal
verification of these devices.

A next direction is to apply the representation in this work to the simulation
of workflow patterns in [5]. Such patterns have been studied previously in the
framework of spiking neural P systems (in short, SN P systems), see for instance
[16, 17, 18]. In order to represent VMs for such patterns the representation needs to
be extended to (instruction or channel) parallel VMs, another interesting direction.
The matrix representation of VMs, perhaps with a corresponding implementation
in software, can help in the verification of the simulated patterns.

The matrix representation in [6] and extended in the present work further
opens the simulation in massively parallel processors, such as graphics processing
units (in short, GPUs). GPUs are also known as accelerators due to their more
optimised performance with linear algebra structures, compared to CPUs. For
instance, many P system simulations benefit from the use of GPUs [19]. More
specifically, the matrix representations of SN P systems, see for instance [7], result
in further optimisations in their GPU simulations [10, 14]. For instance the ideas
from [11] are experimentally validated in [20], with larger and exhaustive tests [21]
which outperform state-of-the-art GPU software libraries.

It is also interesting to continue investigating reachability, other static or dy-
namic properties of VMs, and the complexity of deciding such properties. For
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instance, given some configuration −→c is a configuration −→c ′ reachable, where
−→c ̸= −→c ′? That is, is there a sequence of transitions starting from −→c and ends
with −→c ′? The matrix representation can help with this problem, as well as other
ideas such as liveness, deadness, coverability [22, 23].
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Cabrera, L., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Simulating P systems on GPU
devices: a survey. Fundamenta Informaticae 136(3) (2015) 269–284

20. Hernández-Tello, J., Mart́ınez-Del-Amor, M.Á., Orellana-Mart́ın, D., Cabarle, F.G.:
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Summary. In the present work we further study the computing power of virus machines,
or VMs in short. VMs are computing models inspired by the transmission networks of
viruses. VMs consist of hosts that contain zero or more virus objects, and an instruction
graph that controls the transmissions of virus objects among hosts. The present work
improves the understanding of the computing power of VMs by introducing normal forms.
Normal forms restrict the features or the number of such features in a given computing
model. For VMs we restrict in our normal forms the features such as the number of hosts,
number of instructions, and the number of virus objects in each host. After we recall some
known results on the computing power of VMs we give our normal forms. For instance
we show characterisations from previous inclusions regarding the computation of finite
sets of numbers. We also show new characterisations and normal forms for singleton sets
and finite sets. Another result using a new normal form are characterisations when the
instruction graphs of VMs are (not) restricted to tree graphs. New characterisations of
finite sets from VMs with tree instruction graphs are provided, with some conjectures or
open problems.

Keywords: Virus machines, Computational power, Natural computing, normal
forms.

1 Introduction

In the present work, we consider some normal forms for virus machines, in short,
VMs. Virus machines introduced in [1] are unconventional and natural computing
models inspired by networks of virus transmissions. More information on uncon-
ventional and natural computing is found in [2] and [3], respectively. From [1, 4]
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it is shown that VMs are Turing complete, that is, they are algorithms capable
of general purpose computations. From such works it is also shown some VMs for
computing specific classes of (in)finite sets of numbers.

Virus machines consists of three subgraphs: a directed and weighted host graph
with nodes and edges referred to as hosts and channels, respectively; a directed
and weighted instruction graph where nodes are instructions and edge weights
determine which instruction to prioritise and next activate; an instruction-channel
graph which connects an edge between instructions and channels in the previous
graphs. Hosts contain zero or more virus objects, and activating an instruction
means opening a channel since channels are closed by default. Opening a channel
means virus objects from one host are transferred to another host.

Briefly, the idea of a normal form for some computing model is to consider
restrictions in the model while maintaining its computer power. That is, the con-
sideration of lower bounds for ingredients of a computing model is a natural direc-
tion for investigation. For instance a well-known normal form in language theory
is the Chomsky normal form, CNF in short, from [5]. Instead of having an infinite
number of forms to write rules in a grammar for context-free sets, CNF shows that
two forms are enough. Normal forms in unconventional and bio-inspired models
include [6], with recent and optimal results in [7], a bibliography in [8], and a
recent survey in [9].

The present work contributes the following to the study of virus machines and
their computing power. Some normal forms for VMs are provided, such as: provid-
ing characterisations (previously were inclusions) for generating families of finite
sets; showing new characterisations for finite sets of numbers using restrictions on
the number of required hosts, instructions, or viruses; new characterisations are
also given for singleton sets of numbers. We also consider a new restriction: lim-
iting or not limiting the instruction graph to be a tree graph, that is, an acylcic
graph. We show for instance that some VMs with a tree instruction graph and
with some lower bounds on the number of hosts, instructions, and viruses can
only compute finite sets. Our results on normal forms are then used to ask new
questions regarding other normal forms and restrictions on VMs.

The organisation of the present work is as follows. In Section 2 we recall in a
brief the features of VMs used previously in investigating their computing power.
Section 2.1 recalls some known results, while Section 2.2 provides new results
concerning normal forms of VMs, specifically for computing finite and singleton
sets. Section 3 provides new normal forms, for instance, when the instruction
graph is restricted to a tree. Lastly, Section 4 provides conclusions, conjectures,
and directions for further work.

2 VM with old ingredients

In this section, the computational power of virus machines in generating mode is
discussed, from previous works related to some novel results. In this work the syn-
tax and semantics, in addition to a simple explicit example, have been included in
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the other work of this volume related to virus machines [10] For further knowledge
about the power of virus machines in generating sets we refer to [11, 4, 1]. First,
let us fix some notation.

Let NVM(p, q, n) be the family of sets of natural numbers generated by virus
machines with at most p hosts, q instructions, and n viruses in each host at any
instant of the computation. For unbounded restrictions, they are replaced by a ∗.

2.1 Old results

This subsection is devoted to reviewing results prior to this work regarding the
computing power of VMs with respect to certain classes or families of computable
numbers.

. . . . . .

mk

h1

i1 im1
im1+1 imk−1 imk

imk+1

Fig. 1. A virus machine generating NFIN for NVM(1, ∗, ∗).

The state-of-the-art is presented in Table 1. The virus machines in the generat-
ing mode are Turing Universal; that is, they can generate recursively enumerable
sets of numbers (NRE) [1] for unbounded restrictions. This power is severely re-
duced when the last ingredient is reduced; more precisely, a characterization of
semilinear sets (SLIN) is proved for NVM(∗, ∗, 2) [11]. From now on, not char-
acterizations but contentions have been proven, for finite sets (NFIN) they are
contained in NVM(1, ∗, ∗) and NVM(∗, ∗, 1) [4]. Finally, the set of power of two
numbers is contained in NVM(2, 7, ∗) [4].

An interesting and natural question is can we further restrict or provide better
lower bounds, for known results about VMs? That is, provide “better” character-
isations of finite sets or even other families of sets such as the singleton sets, see
for instance Table 1. As we focus on finite sets later, let us see the VMs used in [4]
to generate finite sets. For NVM(1, ∗, ∗) the VM presented in Figure 1, and for
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i1 i2

i3

i4 i2k−2

i2k−3

i2k−1 i2k

Fig. 2. A virus machine generating NFIN for NVM(∗, ∗, 1).

Family of sets Relation Hosts Instructions Viruses

NRE [1] = * * *
SLIN [11] = * * 2
NFIN [4] ⊆ 1 * *

⊆ * * 1
{2n | n ≥ 0} [4] ⊆ 2 7 *

Table 1. Previous results: Minimum resources needed for generating family subsets of
natural numbers.

NVM(∗, ∗, 1) the Figure 2. The corresponding lemmas were called (viruses) and
(hosts) respectively, and we follow the same notation in this work.

2.2 New results

Finite sets

Having shown the generation of finite sets by a family of virus machines in the
previous section, the bounded ingredient was only one, let us see a family of virus
machines with more than one bounded ingredient.
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Lemma 1 (Viruses-host). Let F = {m1, . . . ,mk} a finite set of natural numbers
greater than zero. Then F can be generated by a virus machine of 2 hosts, 2k + 1
instructions, and the 2 virus in each host at most.

. . . . . .

2

h1

0

h2

2

2

i1

i2

i3

i4

i2mi−1

i2mi

i2mk−1

i2mk

Fig. 3. Virus machine generating the finite set F = {m1, . . . ,mk}.

Proof. Let Π = (Γ,H, I,DH , DI , GC , n1, n2, . . . , nk, i1, hout), where:

1. Γ = {v};
2. H = {h1, h2};
3. I = {i1, . . . , i2mk

};
4. DH = (H ∪ {hout}, {(h1, h2), (h1, hout), (h2, h1), (h2, hout)}, wH), where

wH((h1, h2)) = wH((h2, h1)) = 2 and wH((h1, hout)) = wH((h2, hout)) = 1;
5. DI = (I, EI , wI), where EI = {(ia, ia+1) | a ∈ {1, . . . , 2mk − 1}}∪

{(i2mi−1, i2mk
) |mi ∈ F},

wI((ij , ij′)) = 1 ∀(ij , ij′) ∈ EI ;
6. GC = (I ∪ EH , EC), where

EC = {{i2j+1, (h1, hout)}, {i2j , (h1, h2)} |j ∈ {0, . . . ,mk}, j even }∪
{{i2j+1, (h2, hout)}, {i2j , (h2, h1)} |j ∈ {0, . . . ,mk}, j odd };

7. n1 = 2 and n2 = 0;
8. hout = h0

A visual representation of this virus machine can be found in Figure 3. Let us
prove that for each mi ∈ F , there exists a computation of Π such that it produces
mi viruses in the environment in the halting configuration. Letmi be the generated
number; the following invariant holds:
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φ(x) ≡
{
C2x = (2, 0, i2x+1, x) x even,
c2x = (0, 2, i2x+1, x) x odd,

for each 0 ≤ x ≤ mi − 1. In particular, φ(mi − 1) is true, let us suppose that
mi is odd, then the following computation is verified:

C2(mi−1) = (2, 0, i2(mi−1),mi − 1),

C2mi
= (1, 0, i2mk

,mi),

C2mi+1 = (1, 0,#,mi),

For mi even the computation is analogous, hence the computation halts in
2mi + 1 steps and the number generated is mi.

Another interesting result is that this inclusion is strict.

Proposition 1. NFIN ⊊ NVM(2, ∗, 2).

Proof. Inclusion is direct by the Lemma 1. Let us focus now on the inequality; for
that, we construct a virus machine from [10] that generates the set of all natural
numbers except the zero, which verifies the restrictions of the proposition.

Let ΠNat = (Γ,H, I,DH , DI , GC , 1, 0, i1, hout), where:

1. Γ = {v};
2. H = {h1, h2};
3. I = {i1, . . . , i4};
4. DH = (H ∪ {hout}, {(h1, h2), (h2, hout), (h2, h1)}, wH), where

wH((h1, h2)) = 2 and wH((h2, hout)) = wH((h2, h1)) = 1;
5. DI = (I, EI , wI), where EI = {(i1, i2), (i2,3 ), (i3, i1), (i3, i4)}, wI((ij , ij′)) =

1 ∀(ij , ij′) ∈ EI ;
6. GC = (I ∪ EH , EC), where

EC = {{i1, (h1, h2)}, {i2, (h2, h1)}, {i3, (h2, hout)}};
7. hout = h0;

1

h1 h2
2

i1 i2 i3 i4

Fig. 4. Virus machine generating the set of natural numbers N \ {0}.
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A visual representation of this virus machine can be found in Fig. 4. Now, let
us prove that for each n ∈ N, there exists a halting computation generating the
number n. For generating this number, the following invariant holds:

φ(k) ≡ C3k = (1, 0, i1, k), for each 0 ≤ k ≤ n− 1

In particular, φ(n − 1) is true, then the following configuration is verified
C3(n−1) = (1, 0, i1, n − 1), from here, after the 4 transition steps the halting con-
figuration is reached C3n+1 = (1, 0,#, n), whose output is the natural number
n.

With this proposition a new question arises: can we get not only the inclusion
but the characterization of the finite sets by a family of virus machines? This is
answered in the next section.

Singleton sets

Now let us move to the second family of sets, the Singleton sets, these are sets of
natural numbers with only one element, in this work we include the empty set in
this family.

Theorem 1. The following sets of numbers are equivalent to singleton sets:

1. NVM(1, ∗, 1);
2. NVM(∗, 1, ∗).

Proof. The proof of equivalence is done by the double inclusion technique.

1. Let us start with the left side inclusion, let Γ = {v} be a singleton set of
natural number v ∈ N, then it can be generated by the VM Πsing1 of degree
(1, 1) depicted in Figure 5, the initial configuration is C0 = (1, i1, 0) and in the
following configuration, one virus is consumed and replicated by the weight
of the arc, that is v, and sent to the environment, leading to the halting
configuration C1 = (0,#, v). Thus, after one transition step, the set generated
is {v}.
For the reverse inclusion, suppose any VM with only one host and one virus:
the host can only be attached to the environment, and let us fix that the
weight of that channel is w ∈ N. Thus, the only number generated is w or
none, depending on the instruction graph (if the computation halts or not).
Thus, we generate a singleton set.

2. For the inclusion on the left side we can use the VMΠsing1 depicted in Figure 5
as it only has one instruction and the inclusion has already been proven.
Let us focus on the inclusion of the right side. With only one instruction, there
are two possibilities in the instruction graph:
• The node with a self-arc, which creates an infinite loop, thus a non-halting

computation and generating the empty set.
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1

h1

v

i1

Fig. 5. The VM Πsing1 generating the singleton set {v}.

• The node with no arcs, thus the machine, halts after only one transition
step as there is no other possible path. In this sense, two options can be
separated:
– The instruction is attached to a channel which is attached to the envi-

ronment,
– The instruction is not attached to a channel which is attached to the

environment, thus the number generated is 0.

3 To tree or not to tree

Until now, the computational power of virus machines was studied by bound-
ing/unbounding the three main ingredients: hosts, instructions, and the number
of viruses at any time of computation. Nevertheless, virus machines are heteroge-
neous networks divided by three graphs, thus more restrictions can be studied, for
example, the kinds of graphs that form the instruction graph.

In this section, a novel and interesting scope is proposed to discuss the com-
putational power of virus machines: the instruction graph properties.

For this study, several notation and clarifications must first be presented.

Definition 1. A path in a directed graph G = (V,E) is a sequence of edges
(e1, . . . , en−1), for which there is a sequence of vertices (v1, . . . , vn), such that
ei = (vi, vi+1), for each i = 1, . . . , n − 1, and vi ̸= vj, for all i, j = 1, . . . , n. Un-
der the same conditions, if (vn, v1) ∈ E, then the path is called a cycle. A graph
without cycles is called a tree. The depth of a tree is the longest path of the tree.

We say that v1 is connected to vn if there is a path w = (e1, . . . , en−1), whose
sequence of vertices is (v1, . . . , vn). We denote by V (vi) ⊆ V the subset of vertices
that are connected by a path from vi.

A graph G = (V,E) is connected if there are paths that contain each pair of
vertices. A connected component of the graph G is a subgraph graph G′ = (V ′, E′),
such that V ′ ⊆ V , E′ ⊆ E where (vi, vj) ∈ E′ if and only if (vi, vj) ∈ E, and
vi, vj ∈ V ′ are connected.
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Proposition 2 (Invariance). If the instruction graph DI of a virus machine Π
of degree (p, q), with p, q ≥ 1,

Π = (H, I,DH , DI , GC , n1, . . . , np, i1, hout),

is not connected, then there exists another virus machine Π ′ of degree (p, q′), with
q′ ≤ q, which has the same computation.

Proof. Let Π be the virus machine fixed in the statement, setting the instruction
graph to DI = (I, EI , wI), as it is not connected; then I(i1) ̸= I. Let Π ′ be the
virus machine of degree (p, q′) = |I(i1)|), defined as Π but with a new instruction
graph DI(i1) = (I(i1), EI(i1), wI(i1)).

Due to the semantics associated with virus machines, any instruction that can
be activated must be connected by a path from the initial instruction; thus, the
set of instructions of Π that can be activated at some instant of the computation
is contained in I(i1), therefore Π ′ has the same computation.

Using this result, from now on, all the virus machines defined are supposed to
have a connected instruction graph, with the connected component I(i1), being i1
the initial instruction. In addition, the same notation of the components of a virus
machine Π is used for the following results.

3.1 Instruction graph as a tree

Proposition 3. If the instruction graph is a tree, then all computations halt. In
addition, the number of transition steps is bounded by the depth of the tree.

Having this restriction on the instruction graph is a limitation of the power of
these devices. More precisely, we lose Turing universality; let us see a characteri-
zation of finite sets of natural numbers with this restriction. First, let us fix some
notation:

Let NVMtree(p, q, n) be the family of sets of natural numbers that can be
generated by a virus machine with a tree instruction graph, at most p hosts, q
instructions and n virus in each host at any instant of computation. In case there
is no restriction, it is written as ∗. Let NFIN be the family of finite sets of natural
numbers.

The following results hold:

Corollary 1. NVMtree(∗, ∗, ∗) ⊆ NFIN

Proof. The inclusion NVMtree(∗, ∗, ∗) ⊆ NFIN is direct by the Proposition 3, as
all computations halt, then every virus machine halts in a finite number of steps,
thus the set of numbers that can be generated is finite.

Theorem 2. NVMtree(p, ∗, ∗) = NFIN , for each p ≥ 1.
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Proof. The left inclusion NVMtree(∗, ∗, ∗) ⊆ NFIN is direct from Corollary 1.
The right inclusion NFIN ⊆ NVMtree(p, ∗, ∗), for each p ≥ 1, is proved in

Lemma 1 (host) of the work [4], where the virus machine presented was Figure 1,
which has the instruction graph as a tree.

Corollary 2. NVMtree(∗, ∗, ∗) = NFIN .

Proof. Direct from Corollary 1 and Theorem 2.

Theorem 3. NVMtree(∗, ∗, n) = NFIN , for each n ≥ 1.

Proof. Again, the left inclusion NVMtree(∗, ∗, ∗) ⊆ NFIN is directly related to
the Corollary 1.

The right inclusion NFIN ⊆ NVMtree(∗, ∗, n), for each n ≥ 1 is proved in
Lemma 2 (viruses) of the work [4], where a virus machine with an instruction
graph as a tree was presented, generating finite number sets.

Another interesting result occurs if we also bound the amount of hosts:

Theorem 4. NVMtree(p, ∗, n) = NFIN , for each p ≥ 2, and n ≥ 2.

Proof. The right-hand inclusion is by applying again the Corollary 1. For the
left side, we can use the Lemma 1 where the VM presented in Figure 3 has the
instruction graph as a tree, therefore, NVMtree(p, ∗, n) ⊆ NFIN .

Family of sets Symbol Hosts Instructions Viruses

NFIN (Corollary 2) = * * *
(Theorem 2) = 1 * *
(Theorem 3) = * * 1
(Theorem 4) = 2 * 2

Table 2. Minimum resources needed for generating/characterizing family subsets of
natural numbers with the instruction graph as a tree.

We summarise our main results so far in Table 3.

4 Conjectures and conclusions

In the present work we considered normal forms for VMs: first, by summarising
known results for some families of number sets (see Table 1); next, by providing
some new results and showing strict characterisations from previous inclusions (see
Table 2). We summarise our results and ask new questions for our sequel works
regarding normal forms of VMs in Table 3. The rows marked with “?” in Table
3 are open questions, such as if NVMtree(∗, 2, ∗) is a strict superset of NFIN. It
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is also interesting to consider “new” normal forms, such as the graph properties
of the host graph and the instruction-channel graph. For instance, considering the
weights of the host graph, or if a bijection exists between instructions and channels.

One reason for the interest in normal forms is the consideration of “jumps” in
computing power from one family of computable sets to another. For instance in
Table 1 we know that VMs with unbounded number of hosts, instructions, and
viruses are Turing machines, that is, they are general purpose computers. In Table
3 we see that if we are allowed only one host and one virus in a VM, with an
arbitrary number of instructions (the graph is not a tree) then the computing
power has a significant jump down to singleton sets. Besides realising such jumps,
it is also interesting to realise frontiers or thresholds of the ingredients between
families of sets.

Another interesting direction is to consider “small” VMs in the sense of [12, 13].
That is, give lower bounds to the number of instructions or hosts required to
maintain a certain computing power, in fact, authors in [14] constructed a small
universal VM using 9 hosts and 33 instructions. It would be interesting to study
also the lower bound number to compute NFIN, SLIN. From Table 1 for instance
it is interesting to give better lower bounds for characterisations of NRE and
SLIN . At least for VMs with instruction graph as a tree, Table 2 provides better
lower bounds.

In [15] and its sequel [10] a matrix representation is given for VMs. It is in-
teresting to consider properties in the present work, such as lowering the values
for ingredients or restriction to a tree graph, using such a representation. Another
direction is to consider the results and conjectures in the present work for VMs in
the accepting and function computing modes as in [4], or with parallel VMs as in
[16, 17].

Family of sets Symbol Hosts Instructions Viruses Tree Inst. Graph

Singleton (Theorem 1) = 1 * 1 No
(Theorem 1) = * * 1 No
(Theorem 1) = * 1 * No

NFIN (Theorem 2) = 1 * * Yes
(Theorem 3) = * * 1 Yes
(Theorem 4) = 2 * 2 Yes

(Proposition 1) ⊊ 2 * 2 No
⊊? * 2 * Yes
⊆? * 3 * Yes

Table 3. Summary of the minimum resources needed for generating/characterizing fam-
ily subsets of natural numbers.
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