
Generating APCol systems, mainly

deterministic ones

Lucie Ciencialová1 Luděk Cienciala1 Erzsébet Csuhaj-Varjú2

17th Brainstorming Week on Membrane Computing

February 5-8, 2019, Sevilla, Spain

1Institute of Computer Science

and Research Institute of the IT4Innovations Centre of Excellence,

Silesian University in Opava, Czech Republic

lucie.ciencialova@fpf.slu.cz ludek.cienciala@fpf.slu.cz

2Faculty of Informatics, Eötvös Loránd University,

Budapest, Hungary

csuhaj@inf.elte.hu

Outline

Introduction

Definition

Context programs

Configuration

Computation and result of computation

Deterministic APCol systems

Generative power of APCol systems

2

APCol systems

APCol systems (Automaton-like P colonies)

were introduced in1 as an extension of P colonies (introduced

in2) - a very simple variant of membrane systems inspired by

colonies of formal grammars.

1L. Cienciala, L. Ciencialová, and E. Csuhaj-Varjú. “Towards on P colonies

processing strings”. In: Proc. BWMC 2014, Sevilla, 2014. Sevilla, Spain: Fénix

Editora, 2014, pp. 102–118.
2J. Kelemen, A. Kelemenová, and Gh. Păun. “Preview of P colonies: A

biochemically inspired computing model”. In: Workshop and Tutorial

Proceedings. Ninth International Conference on the Simulation and Synthesis

of Living Systems (Alife IX). Boston, Mass, 2004, pp. 82–86.

3

Introduction

An APCol system consists of

• a finite number of components called agents - finite

collections of objects embedded in a membrane

• a shared environment, that is represented by a string.

Agents

• equipped with programs which are composed from rules that

allow them to interact with their environment.

• Capacity - the number of objects inside each agent - 2.

4

Introduction

Programs

The rules are combined into programs in such a way that all

objects inside the agent are affected by execution of the rules. So

there are two rules in the program.

5

APCol systems

Definition (APCol system3)

An APCol system is a construct

Π = (O, e,A1, . . . ,An), where

• O is an alphabet; its elements are called the objects,

• e ∈ O, called the basic object,

• Ai , 1 ≤ i ≤ n, are agents.

3L. Cienciala, L. Ciencialová, and E. Csuhaj-Varjú. “Towards on P colonies

processing strings”. In: Proc. BWMC 2014, Sevilla, 2014. Sevilla, Spain: Fénix

Editora, 2014, pp. 102–118.

6

APCol systems

Definition (Agent)

Agent is a triplet Ai = (ωi ,Pi ,Fi), where

• ωi is a multiset over O, describing the initial state (content)

of the agent, |ωi | = 2,

• Pi = {pi ,1, . . . , pi ,ki} is a finite set of programs associated

with the agent, where each program is a pair of rules. Each

rule is in one of the following forms:

• a → b, where a, b ∈ O, called an evolution rule,

• c ↔ d , where c , d ∈ O, called a communication rule,

• Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai ,

7

APCol systems

Context programs

Both rules in a program can be communication rules, an agent

can work with two objects in the string in one step of the

computation. The agent can act only in one place in a

computation step and the change of the string depends both on

the order of the rules in the program and on the interacting

objects.

• 〈a ↔ b; c ↔ d〉 - [ac] wbdw ′ ⇒ [bd] wacw ′

• 〈c ↔ d ; a ↔ b〉 - [ac] wdbw ′ ⇒ [bd] wcaw ′

• 〈a ↔ b; c ↔ e〉 - [ac] wbw ′ ⇒ [be] wacw ′

• 〈c ↔ e; a ↔ b〉 - [ac] wbw ′ ⇒ [be] wcaw ′

8

APCol systems

Context programs

Both rules in a program can be communication rules, an agent

can work with two objects in the string in one step of the

computation. The agent can act only in one place in a

computation step and the change of the string depends both on

the order of the rules in the program and on the interacting

objects.

• 〈a ↔ e; c ↔ e〉 - [ac] ww ′ ⇒ [ee] wacw ′

• 〈e ↔ b; e ↔ d〉 - [ee] wbdw ′ ⇒ [bd] ww ′

• 〈e ↔ d ; e ↔ b〉 - [ee] wdbw ′ ⇒ [ee] ww ′

• 〈e ↔ e; e ↔ d〉; 〈e ↔ e; c ↔ d〉, . . . - these programs can be

replaced by programs of type 〈e → e; c ↔ d〉.

8

APCol systems

Configutation of an APCol system

A configuration of an APCoL system Π is given by

(w ;w1, . . . ,wn), where |wi | = 2, 1 ≤ i ≤ n, wi represents all the

objects placed inside the i -th agent and w ∈ (O − {e})∗ is the

string to be processed.

Initial configuration

Aan initial configuration of the APCol system is an (n + 1)-tuple

c = (ω;ω1, . . . , ωn) where ω is the initial state of the environment

and the other n components are multisets of strings of objects,

given in the form of strings, the initial states the of agents.

9

APCol systems

Computational step

At each step of the computation every agent attempts to find

one of its programs to use. If the number of applicable programs

is higher than one, the agent non-deterministically chooses one of

them. At every step of computation, the maximal possible

number of agents have to perform a program.

Computation, halting computation

By applying programs, the automaton-like P colony passes from

one configuration to another configuration. A sequence of

configurations starting from the initial configuration is called a

computation. A configuration is halting if the APCol system has

no applicable program.

10

APCol systems

Result of computation - generating mode

The string wF is generated by Π iff there exists computation

starting in an initial configuration (ε;ω1, . . . , ωn) and the

computation ends by halting in the configuration

(wF ;w1, . . . ,wn), where at least one of wi ∈ Fi for 1 ≤ i ≤ n.

Result of computation - accepting mode

In the case of accepting mode, a computation is called accepting

if and only if at least one agent is in final state and the string

obtained is ε. The string ω is accepted by the APCol system Π if

there exists a computation by Π such that it starts in the initial

configuration (ω;ω1, . . . , ωn) and the computation ends by

halting in the configuration (ε;w1, . . . ,wn), where at least one of

wi ∈ Fi for 1 ≤ i ≤ n.

11

Determinism

Configurations and multisets of programs

Let c = (w1, . . . ,wn;wE) be a configuration of APCol system. If

the system is deterministic then there is only one maximal

multiset of applicable programs MP- at least one for each agent.

We can construct n-tuple xc of strings of length 2 aibi

corresponding to string that agent i consumes from

environmental string by applying program from MP . If there is

rewriting rule in the program e appears in the string aibi . If some

agent has no applicable program there is ee in the xc .

u0 ai1bi1 u1 ai2bi2 u2 . . . un−1 ainbin un = wE

12

Deterministic APCol system in accepting mode

Let M be two-way k-headed deterministic finite automaton

(2DFA(k)) then there exists deterministic APCol system A working

in accepting mode such that L(M)=L(A).

13

Deterministic APCol system in generating mode

Let M be deteministic register machine then there exists

deterministic APCol system A working in generating mode and

with two agents such that N(M)=N(A).

Idea - how to do zero-check (l1 : (SUB(r), l2, l3))

Content of register r is represented by number of ar in the

environmental string. The string is in the form

#a1 . . . a1 a2 . . . a2 a3 . . . an#
′

n is number of registers.

If agent need to erase some ar it place mark ↑ just after # and

move it through the string. If there is any ar agent erase it and

generate label l2. If there is no ar , agent consumes ↑ together

with as (s > r) or #′ it generates label l3.

14

APCol systems

The results about generative power of APCol systems4:

• Restricted APCol systems with two agents working in

generating mode can accept any recursively set of natural

numbers.
NAPColgenR(2) = NRE

• A family of sets of natural numbers acceptable by partially

blind register machine can be generated by an APCol system

with one agent with restricted programs.

NRMpb ⊆ NAPColgenR(1)

4Luděk Cienciala, Lucie Ciencialová, and Erzsébet Csuhaj-Varjú. “A class of

restricted P colonies with string environment”. In: Natural Computing 15.4

(2016), pp. 541–549. issn: 1572-9796. doi: 10.1007/s11047-016-9564-3.

url: http://dx.doi.org/10.1007/s11047-016-9564-3.

15

https://doi.org/10.1007/s11047-016-9564-3
http://dx.doi.org/10.1007/s11047-016-9564-3

What can I do? I am alone. . . and nondeterministic

CS ⊆ APColgen(1)

To every context-sensitive grammar G in Kuroda normal form

there exists APCol system A with one agent working in

generating mode such that L(G)=L(A).

APColgen(1) ⊆ CS

To every APCol system A with one agent working in generating

mode there exists context-sensitive grammar G such that

L(A)=L(G).

16

CS grammar → APCol system

Initialization

Agent Program String

(ee) 〈e → S ; e → X ′〉 ε

(SX ′) 〈S ↔ e;X ′ → X 〉 ε

(eX) S

17

CS grammar → APCol system

pi : A → BC

Agent Program String

(eX) 〈e → pi ;X → X ′〉 u A v

(piX
′) 〈pi → p′i ;X

′ ↔ A〉 u A v

(p′iA) 〈p′i → p′′i ;A → B〉 u X ′ v

(p′′i B) 〈p′′i ↔ X ′;B ↔ e〉 u X ′ v

(X ′e) 〈X ′ ↔ p′′i ; e → e〉 u Bp′′i v

(p′′i e) 〈p′′i → p′′′i ; e → C 〉 u BX ′ v

(p′′′i C) 〈p′′′i → p′′′i ;C ↔ X ′〉 u BX ′ v

(p′′′i X
′) 〈p′′′i → e;X ′ → X 〉 u BC v

17

APCol system → CS grammar

Idea

String Rules Program

ab a1a2 . . . an

ab ai → ai ab

ai ab → ab ai

ab c → a cd
′

< a ↔ c ; b ↔ d >

cd
′

d → b cd

18

Thanks!

I would like to thank:

• my colleagues for their ideas, work and patience,

• You, the audience, for your attention,

• and, finally, Sevilla team for organizing this perfect event.

19

	Introduction
	Definition
	Context programs
	Configuration
	Computation and result of computation

	Deterministic APCol systems
	Generative power of APCol systems

