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Motivation

P systems with active membranes are best known for their
ability to solve NP-complete problems in polynomial time

It is also interesting which combination of the possible
features are not enough to solve NP-complete problems,
but enough to solve problems in P

For example, elementary membrane division rules are

necessary 1o solve NP-complete problems [2000, Zandron,
Fernetti, Mauri]

But not sufficient to solve problems in P if polarizations and
dissolution rules are not allowed [2008, Murphy, Woods]
(based on the notion of dependency graph introduced in
[2006, Gutierrez-Naranho et al.])



Motivation

» Unfortunately, showing P lower and upper bounds on the
power of certain variants of P systems with active
membranes is not always easy

» The P conjecture: P systems with active membranes using
no polarizations characterize the class P [2005, Paun]

» P |ower bound is already proved (semi uniform solution in
[2011, Murphy, Woods], uniform solution in [2014, Gazdag et
al.]

®» P ypper bound is still unproved




Motivation

» There are positive results for the P upper bound in restricted
cases, for example when

= only symmetric elementary division is allowed [2007, Murphy,
Woods] or when

» polarization, evolution rules and communications rules are not
allowed and the system has a restricted initial membrane
structure [2009, Woods et al.]

» On the other hand, it seems to be very difficult to solve a P-
complete problem with P systems with no polarizations, when
evolution and communication rules are not allowed

» |n this talk we discuss the lower and upper bounds of the
computational power of certain restricted variants of P
systems with active membranes




Preliminaries

» P systems with active membranes have the following
types of rules

» Fvolution rules

INn and out communication rules

»
» Dissolution rules,
»

Membrane division rules

® in this talk we do not consider those systems which employ
non-elementary division rules, they can decide PSPACE
complete problems even without polarization, evolution and
communication [2009, Zandron et al.]

» We assume the usual maximal parallel derivation
strategy




Preliminaries

®» Recognizer P systems

» Fvery computation halts and yields the same answer yes or
no,

» The input is placed info a designated input membrane

» The output appears in the last step of the computation in a
designated output membrane

» To solve decision problems we use uniform families of
recognizer P systems

® |n this talk we consider possible solutions of the NL-
complete STCON problem:

» Given a directed graph ¢ = (V,E) ands,t €V

» Decide if there is a path from s to t




Method for solving STCON

» Given adirected graph ¢ = (V,E)ands,t €V
» Decide if there is a path from s to t

» We may assume, without the loss of generality, that our
vertices are labeled with natural numbers from 1to N,
and s =1 and t = N}

» We compute a set H of vertices step-by-step
» |nitially, H contains only 1

» |n every step, we add to H those vertices that are
reachable from the elements currently in H

» Affer at most N — 1 steps every vertices reachable from 1
are present in H




Possible simulation of this
method

®» We use an encapsulated structure

» There are N — 1 components, one for each main step of
the computation of H

® |n every component, there are N = (N — 1) layers, one for
every pair of vertices (every possible edges)

» Every layer may infroduce a new vertex

®» The innermost layer contains the next component
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Cases to handle during the
step-by-step computation

» There can be several cases during the computation
involving the vertices i and j

There is no edge from i to j (case 1)

There is an edge from i to j, but i is not present in H after
k — 1 steps (case 2)

There is an edge from i toj, i is presentin H after k — 1
steps, but j is not (case 3)

There is an edge from i to j, and both i and j are present
in H after k — 1 steps (case 4)



A solution without evolution,
dissolution, division, and in-
communication rules

» We describe a uniform family of P systems to implement
the above method solving STCON

» Fncoding of the input

® An object ij represents, that there is a directed edge from the
vertex i to j

= An object ij represents, that there isn’t such an edge

» We call them positive and negative edge-objects

= Every layer consists two membranes, labeled with i, j,a and
i,j,b [the layer is associated with the pair of vertices (i, j)]

®» The input membrane is the innermost

= |t contains an object 1 and objects 2,3, ..., N (representing, that
initially only vertex 1 is reachable

» We call them positive and negative vertex-objects)

» |nitially every membrane has neutral charge




A solution without evolution,
dissolution, division, and in-
communication rules

= During the computation the following invariant
properties will hold

» vie[l..N]: exactly one of the vertex-objects i ori is
present in the system

» After going through the layers of the kth component it
correctly represents that i can be reached from 1 in at
most k steps

= Main rule: every object can go through every
membrane that has negative polarization




Initializing the layers

» First, the edge-objects set the polarizations of the
corresponding i, j,a membranes by out-
communication rules

» A positive [resp. negative] edge-object sets the
polarization to positive [resp. negative])

» The i,j, b membranes keep their neutral charges

» Then the vertex-objects can begin their ,,journey” to
the SKIN




Handle the possible cases

= |f g positive (resp. negative) vertex-object i (resp. i)
reaches an i, j,a membrane with negative
polarization, the object goes through it, then goes
through the i, j, b membrane with neutral charge, and
sefs its polarization to negative (case 1)

» |f o negatvie vertex-object i reaches an i, j,a
memibrane with positive charge, the object goes
through it, and sets its polarization to negative , then
goes through the i, j, b membrane with neutral charge,
and sefs its polarization to negative too (case 2)




Handle the possible cases

If a positive vertex-object i reaches an i, j,a membrane
with positive charge, the object goes through it and
,grabs” that charge (it becomes an it vertex-object, and
the membranes polarization becomes negative)

The it object then ,,gives” its charge to the i,j, b
membrane, and becomes an i vertex-object again

Then, if a j negative vertex-object comes to the i,j, b
membrane (with positive polarization) it goes out, ,,grabs™
the charge, and becomes a j vertex-object, and the
membranes polarization becomes negative (case 3)

If a j positive vertex-object meets the memibrane, it sets ifs
polarization to negative too (case 4)
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andle the possible cases

Case 2
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andle the possible cases

Caose 3
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andle the possible cases

Case 4
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A solution without evolution,
and communication rules

» We use a very similar system, with some minor changes
» We use positive and negative edge- and vertex-objects

= Minor change in the invariant property: we have exactly
one negative vertex-object, or at least one positive
vertex-object to a vertex

= Trivially, the ,,main rule” won't hold ©

» Exchanging a negative vertex-object to a positive variant
is made with a sequence of elementary divisions and
dissolutions

= During if, we create unnecessary copies of negative
vertex-objects, that must be removed, so we must extend
the layers with removers




An aftempt to iIncrease the
lower bound to P

= Horn formula: a propositional formula ¢ in the
conjunctive normal form (CNF) such that every clause
of ¢ contains at most one positive literals

®» Fg. xVayV-az, x, -y are Horn clauses

» HORNSAT: Given a Horn formula ¢, decide if ¢ is
satisfiable

» | s known that HORNSAT is P-complete

» The direct solution of HORNSAT seems to be difficult
due to the very limited ability of communication

» We consider HORNSSAT: Given a Horn formula ¢ such
that every clause of ¢ contains at most three literals;
Decide if ¢ is safisfiable




An aftempt to iIncrease the
lower bound to P

= HORNSAT <, HORN3SAT:

» For a Horn formula ¢, a HORN3SAT instance ¢’ can be
constructed using logarithmic space s.t.
@ is saftisfiable iff ¢’ is satisfiable

» Example:C =xV-ayV-zV-aue€p=

» Cl =XV—|yV—|TlC|ﬂd CZ =nV—|ZV—|u€<p’ (TliSCI new
propositional variable)

» (, and C, are Horn clauses

» Thus HORNS3SAT is P-complete

» Observation:xVayV-az~yAz-x, x~T->x, ay~y -l




An aftempt to iIncrease the
lower bound to P

» Recall: in case of STCON the presented P systems computed
a set of those vertices that are reachable from s

» This was done step by step: given the set of those vertices that
can be reached from s in at most i steps, the P systems
computed the set of those vertices that can be reached from s in
at most i + 1 steps.

» Basically, the systems followed the edges of the form u - v
represented by the membranes

®» |0 case of HORNSSAT the P systems should compute the set of
those variables that must be true in order to make the
formula true

» F g, if we know that x and y must be true and x Ay — z is a clause
of the formula, then z must be true

» Thus the system should follow here ,,edges” of the form x Ay - z




P upper bound for a restricted
variant of P systems with AM’s

» Giving polynomial time upper bound on the power of P systems
with AM’s is hard if both division and dissolution rules are allowed
(even if the rules have no polarizations).

» Example: using the rules [a] = [aq][a,], [b] = [b1]1b,], [c] = [c1]lc,]
on the membrane [a, b, c] yields 23 = 8 different membranes

» Storing the representation of each membrane needs exponential
space

» P ypper bound is given when polarization, evolution and
communication is not allowed, and the initial membrane structure
is a sequence single path [2009, Woods et al.]

» Object division graph is used to follow the possible divisions for a given
object and membrane label

» The numbers of different objects in a membrane are stored in a vector




P upper bound for a restricted
variant of P systems with AM’s

» We consider P systems with AM’s without polarization, evolution
and communication

» We propose a method for representing exponentially many
different membranes using polynomial space

» Recall: the representation is hard only for the elementary
membranes

» Consider the rules
®» [a] - [a;][a;], [b] = [b1][b,], [c] = [c1][c,] and
®» [a,] >aand[c] = ¢
®» et C =|ab,cd]
» The representation of C after the

» [ststep: (a; | ay)[b,cd]

» 2nd step: {al,b, ¢, d] (the multiset {a, b, ¢, d} should be added to the
representation of objects in the parent)




P upper bound for a restricted
variant of P systems with AM’s

» The representation of € after the
» 3dstep: (by | by) [ay, ¢, d]
= 4 step: (by | by)(cy | cz) [ay,d]

» 5 step: (by | by) [c3,a4,d] (the multiset represented by (by | by) [¢, a4, d]
should be added to the representation of objects in the parent)

®» Afevery step

» the new representation of the elementary membranes and

» the representation of the objects in the parents can be computed
in polynomial time

» (no formal proof yet)

» |f the construction works, the next step is to extend it to out-
communication rules




Summary

» |f we can prove the correctness of the constructions,
then

» the power of P systems with no evolution, dissolution,
division and in-communication rules characterize the
complexity class P,

» fthe power of P systems with no evolution and
communication rules lower bounded by P, and

» fthe power of P systems with no polarization, evolution
and communication rules is upper bounded by P




Thank youl!




