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Motivation 

 P systems with active membranes are best known for their 

ability to solve NP-complete problems in polynomial time 

 It is also interesting which combination of the possible 

features are not enough to solve NP-complete problems, 

but enough to solve problems in P  

 For example, elementary membrane division rules are 

necessary to solve NP-complete problems [2000, Zandron, 

Fernetti, Mauri] 

 But not sufficient to solve problems in P if polarizations and 

dissolution rules are not allowed [2008, Murphy, Woods] 

(based on the notion of dependency graph introduced in 

[2006, Gutierrez-Naranho et al.]) 

 



Motivation 

 Unfortunately, showing P lower and upper bounds on the 

power of certain variants of P systems with active 

membranes is not always easy 

 The P conjecture: P systems with active membranes using 

no polarizations characterize the class P [2005, Paun] 

 P lower bound is already proved (semi uniform solution in 

[2011, Murphy, Woods], uniform solution in [2014, Gazdag et 

al.] 

 P upper bound is still unproved 



Motivation 

 There are positive results for the P upper bound in restricted 
cases, for example when 

 only symmetric elementary division is allowed [2007, Murphy, 
Woods] or when 

 polarization, evolution rules and communications rules are not 
allowed and the system has a restricted initial membrane 
structure [2009, Woods et al.] 

 On the other hand, it seems to be very difficult to solve a P-
complete problem with P systems with no polarizations, when 
evolution and communication rules are not allowed 

 In this talk we discuss the lower and upper bounds of the 
computational power of certain restricted variants of P 
systems with active membranes 



Preliminaries 

 P systems with active membranes have the following 
types of rules 

 Evolution rules 

 In and out communication rules 

 Dissolution rules,  

 Membrane division rules  

 in this talk we do not consider those systems which employ 
non-elementary division rules, they can decide PSPACE 
complete problems even without polarization, evolution and 
communication [2009, Zandron et al.] 

 We assume the usual maximal parallel derivation 
strategy 



Preliminaries 

 Recognizer P systems 

 Every computation halts and yields the same answer 𝑦𝑒𝑠 or 
𝑛𝑜, 

 The input is placed into a designated input membrane 

 The output appears in the last step of the computation in a 
designated output membrane 

 To solve decision problems we use uniform families of 
recognizer P systems 

 In this talk we consider possible solutions of the NL-
complete STCON problem: 

 Given a directed graph  𝐺 = 𝑉, 𝐸  and 𝑠, 𝑡 ∈ 𝑉 

 Decide if there is a path from 𝑠 to 𝑡 

 

 

 



Method for solving STCON 

 Given a directed graph  𝐺 = 𝑉, 𝐸  and 𝑠, 𝑡 ∈ 𝑉 

 Decide if there is a path from 𝑠 to 𝑡 

 {We may assume, without the loss of generality, that our 
vertices are labeled with natural numbers from 1 to N, 

and 𝑠 = 1 and 𝑡 = 𝑁} 

 We compute a set 𝐻 of vertices step-by-step 

 Initially, 𝐻 contains only 1 

 In every step, we add to 𝐻  those vertices that are 

reachable from the elements currently in 𝐻 

 After at most 𝑁 − 1 steps every vertices reachable from 1 

are present in 𝐻 



Possible simulation of this 

method  

 We use an encapsulated structure 

 There are 𝑁 − 1 components, one for each main step of 
the computation of 𝐻 

 In every component, there are 𝑁 ∗ (𝑁 − 1) layers, one for 

every pair of vertices (every possible edges) 

 Every layer may introduce a new vertex 

 The innermost layer contains the next component 



The structure 

 

The components The layers 

The 𝑖th component 

The (𝑖 − 1)th 

component 

and the next component 



Cases to handle during the 

step-by-step computation 

 There can be several cases during the computation 

involving the vertices 𝑖 and 𝑗 

 There is no edge from 𝑖 to 𝑗 (𝑐𝑎𝑠𝑒 1) 

 There is an edge from 𝑖 to 𝑗, but 𝑖 is not present in 𝐻 after 

𝑘 − 1 steps (𝑐𝑎𝑠𝑒 2) 

 There is an edge from 𝑖 to 𝑗, 𝑖 is present in 𝐻 after 𝑘 − 1 

steps, but 𝑗 is not (𝑐𝑎𝑠𝑒 3) 

 There is an edge from 𝑖 to 𝑗, and both 𝑖 and 𝑗 are present 

in 𝐻 after 𝑘 − 1 steps (𝑐𝑎𝑠𝑒 4) 

 

 



A solution without evolution, 

dissolution, division, and in-

communication rules 

 We describe a uniform family of P systems to implement 
the above method solving STCON 

 Encoding of the input 

 An object 𝑖𝑗 represents, that there is a directed edge from the 
vertex 𝑖 to 𝑗 

 An object 𝑖𝑗 represents, that there isn’t such an edge 

 We call them positive and negative edge-objects 

 Every layer consists two membranes, labeled with 𝑖, 𝑗, 𝑎 and 
𝑖, 𝑗, 𝑏 [the layer is associated with the pair of vertices (𝑖, 𝑗)] 

 The input membrane is the innermost 

 It contains an object 1 and objects 2, 3, … ,𝑁 (representing, that 
initially only vertex 1 is reachable 

 We call them positive and negative vertex-objects) 

 Initially every membrane has neutral charge 



A solution without evolution, 

dissolution, division, and in-

communication rules 

 During the computation the following invariant 

properties will hold 

 ∀ 𝑖 ∈ 1…𝑁 : exactly one of the vertex-objects 𝑖 or 𝑖 is 
present in the system 

 After going through the layers of the 𝑘th component it 

correctly represents that 𝑖 can be reached from 1 in at 

most 𝑘 steps 

 Main rule: every object can go through every 

membrane that has negative polarization 



Initializing the layers 

 First, the edge-objects set the polarizations of the 

corresponding 𝑖, 𝑗, 𝑎 membranes by out-

communication rules 

 A positive [resp. negative] edge-object sets the 

polarization to positive [resp. negative]) 

 The 𝑖, 𝑗, 𝑏 membranes keep their neutral charges 

 Then the vertex-objects can begin their „journey” to 

the 𝑆𝐾𝐼𝑁 

 



Handle the possible cases 

 If a positive (resp. negative) vertex-object 𝑖 (resp. 𝑖) 
reaches an 𝑖, 𝑗, 𝑎 membrane with negative 

polarization, the object goes through it, then goes 
through the 𝑖, 𝑗, 𝑏 membrane with neutral charge, and 

sets its polarization to negative (case 1) 

 If a negatvie vertex-object 𝑖 reaches an 𝑖, 𝑗, 𝑎 

membrane with positive charge, the object goes 

through it, and sets its polarization to negative , then 

goes through the 𝑖, 𝑗, 𝑏 membrane with neutral charge, 

and sets its polarization to negative too (case 2) 



Handle the possible cases 

 If a positive vertex-object 𝑖 reaches an 𝑖, 𝑗, 𝑎 membrane 
with positive charge, the object goes through it and 

„grabs” that charge (it becomes an 𝑖+ vertex-object, and 
the membranes polarization becomes negative)  

 The 𝑖+ object then „gives” its charge to the 𝑖, 𝑗, 𝑏 
membrane, and becomes an 𝑖 vertex-object again 

 Then, if a 𝑗 negative vertex-object comes to the 𝑖, 𝑗, 𝑏 
membrane (with positive polarization) it goes out, „grabs” 
the charge, and becomes a 𝑗 vertex-object, and the 
membranes polarization becomes negative (case 3) 

 If a 𝑗 positive vertex-object meets the membrane, it sets its 

polarization to negative too (case 4) 



Handle the possible cases 
Case 1 

 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− 0 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− 0 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− − 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− − 

𝑗 𝑖 𝑗 𝑖 

𝑗 𝑖 𝑗 

𝑖 



Handle the possible cases 
Case 2 

 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

+ 0 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− 0 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− − 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− − 

𝑗 𝑖 𝑗 𝑖 

𝑗 𝑖 𝑗 

𝑖 



Handle the possible cases 
Case 3 

 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

+ 0 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− 0 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− + 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− − 

𝑗 𝑖 𝑗 𝑖+ 

𝑗 𝑖 𝑗 

𝑖 



Handle the possible cases 
Case 4 

 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

+ 0 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− 0 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− + 

The next layer 

𝑖, 𝑗, 𝑏 

𝑖, 𝑗, 𝑎 

− − 

𝑗 𝑖 𝑗 𝑖+ 

𝑗 𝑖 𝑗 

𝑖 



A solution without evolution, 

and communication rules 

 We use a very similar system, with some minor changes 

 We use positive and negative edge- and vertex-objects 

 Minor change in the invariant property: we have exactly 

one negative vertex-object, or at least one positive 

vertex-object to a vertex 

 Trivially, the „main rule” won’t hold  

 Exchanging a negative vertex-object to a positive variant 

is made with a sequence of elementary divisions and 

dissolutions 

 During it, we create unnecessary copies of negative 

vertex-objects, that must be removed, so we must extend 

the layers with removers 



An attempt to increase the 

lower bound to P 

 Horn formula: a propositional formula 𝜑 in the 

conjunctive normal form (CNF) such that every clause 

of 𝜑 contains at most one positive literals 

 E.g.   𝑥 ∨ ¬𝑦 ∨ ¬𝑧,   𝑥,   ¬𝑦  are Horn clauses 

 HORNSAT: Given a Horn formula 𝜑, decide if 𝜑 is 

satisfiable 

 It is known that HORNSAT is P-complete 

 The direct solution of HORNSAT seems to be difficult 

due to the very limited ability of communication  

 We consider HORN3SAT: Given a Horn formula 𝜑 such 

that every clause of 𝜑 contains at most three literals; 

Decide if 𝜑 is satisfiable 



An attempt to increase the 

lower bound to P 

 HORNSAT ≤𝑙  HORN3SAT: 

 For a Horn formula 𝜑, a HORN3SAT instance 𝜑′ can be 

constructed using logarithmic space s.t.  

   𝜑 is satisfiable iff 𝜑′ is satisfiable  

 Example: 𝐶 = 𝑥 ∨ ¬𝑦 ∨ ¬𝑧 ∨ ¬𝑢 ∈ 𝜑 ⇒ 

  𝐶1 = 𝑥 ∨ ¬𝑦 ∨ ¬𝑛 and 𝐶2 = 𝑛 ∨ ¬𝑧 ∨ ¬𝑢 ∈ 𝜑′ (𝑛 is a new 

propositional variable) 

 𝐶1 and 𝐶2 are Horn clauses 

 Thus HORN3SAT is P-complete 

 Observation: 𝑥 ∨ ¬𝑦 ∨ ¬𝑧 ∼ 𝑦 ∧ 𝑧 → 𝑥,  𝑥 ∼↑→ 𝑥,  ¬𝑦 ∼ 𝑦 →↓  

 

 



An attempt to increase the 

lower bound to P 

 Recall: in case of STCON the presented P systems computed 
a set of those vertices that are reachable from 𝑠 

 This was done step by step: given the set of those vertices that 
can be reached from 𝑠 in at most 𝑖 steps, the P systems 
computed the set of those vertices that can be reached from 𝑠 in 
at most 𝑖 + 1 steps.  

 Basically, the systems followed the edges of the form 𝑢 → 𝑣 
represented by the membranes 

 In case of HORN3SAT the P systems should compute the set of 
those variables that must be 𝑡𝑟𝑢𝑒 in order to make the 
formula 𝑡𝑟𝑢𝑒 

 E.g, if we know that 𝑥 and 𝑦 must be 𝑡𝑟𝑢𝑒 and 𝑥 ∧ 𝑦 → 𝑧 is a clause 
of the formula, then 𝑧 must be 𝑡𝑟𝑢𝑒 

 Thus the system should follow here ,,edges” of the form 𝑥 ∧ 𝑦 → 𝑧  

 



P upper bound for a restricted 

variant of P systems with AM’s 

 Giving polynomial time upper bound on the power of P systems 

with AM’s is hard if both division and dissolution rules are allowed 

(even if the rules have no polarizations). 

 Example: using the rules  𝑎 → 𝑎1 𝑎2 , 𝑏 → 𝑏1 𝑏2 , 𝑐 → 𝑐1 𝑐2  
on the membrane [𝑎, 𝑏, 𝑐] yields 23 = 8 different membranes 

 Storing the representation of each membrane needs exponential 

space 

 P upper bound is given when polarization, evolution and 

communication is not allowed, and the initial membrane structure 

is a sequence single path [2009, Woods et al.] 

 Object division graph is used to follow the possible divisions for a given 

object and membrane label 

 The numbers of different objects in a membrane are stored in a vector 



P upper bound for a restricted 

variant of P systems with AM’s 

 We consider P systems with AM’s without polarization, evolution 
and communication 

 We propose a method for representing exponentially many 
different membranes using polynomial space 

 Recall: the representation is hard only for the elementary 
membranes 

 Consider the rules  

 𝑎 → 𝑎1 𝑎2 , 𝑏 → 𝑏1 𝑏2 , 𝑐 → 𝑐1 𝑐2  and  

 [𝑎2] → 𝑎  and [𝑐1] → 𝑐  

 Let 𝐶 = [𝑎, 𝑏, 𝑐, 𝑑] 

 The representation of 𝐶 after the 

 1st step: 𝑎1 𝑎2  [𝑏, 𝑐, 𝑑] 

 2nd step: [𝑎1, 𝑏, 𝑐, 𝑑]  (the multiset {𝑎 , 𝑏, 𝑐, 𝑑} should be added to the 
representation of objects in the parent) 



P upper bound for a restricted 

variant of P systems with AM’s 

 The representation of 𝐶 after the 

 3rd step: 𝑏1 𝑏2  [𝑎1, 𝑐, 𝑑] 

 4th step: 𝑏1 𝑏2 (𝑐1 ∣ 𝑐2) [𝑎1, 𝑑] 

 5th step: 𝑏1 𝑏2  [𝑐2, 𝑎1, 𝑑]  (the multiset represented by 𝑏1 𝑏2  [𝑐 , 𝑎1, 𝑑] 
should be added to the representation of objects in the parent) 

 At every step  

 the new representation of the elementary membranes and  

 the representation of the objects in the parents can be computed 

in polynomial time 

 (no formal proof yet) 

 If the construction works, the next step is to extend it to out-

communication rules  



Summary 

 If we can prove the correctness of the constructions, 

then  

 the power of P systems with no evolution, dissolution, 

division and in-communication rules characterize the 

complexity class P, 

 the power of P systems with no evolution and 

communication rules lower bounded by P, and 

 the power of P systems with no polarization, evolution 

and communication rules is upper bounded by P 



Thank you! 


