
VARIANTS OF ENERGY-
CONTROLLED P SYSTEMS

Artiom Alhazov1

Rudolf Freund2

Sergiu Ivanov3

1Institute of Mathematics and Computer Science, Moldova
2TU Wien, Austria

3Université Paris Est, France

NIT 2016, Valencia

Overview

The Basic Model of Membrane (P) Systems

Register Machines

Energy-Controlled P Systems
Energy-Controlled Simple P Systems with
Cooperative Rules
(Purely) Catalytic Energy-Controlled Simple P
Systems

Conclusion

P Systems

P systems are formal systems processing multisets
of objects in a cell-like membrane structure.
In the basic model introduced by Gheorghe Păun, in
each transition step, a maximal multiset of rules is
applied to the objects in each membrane region.

Gh. Păun:
Computing with membranes.
J. Comput. Syst. Sci., 61 (2000), 108–143 (see also TUCS
Report 208, November 1998, www.tucs.fi).

Gh. Păun, G. Rozenberg, A.Salomaa (Eds.):
The Oxford Handbook of Membrane Computing.
Oxford Univ. Press, 2010.

The P Systems Website: http://ppage.psystems.eu.

The Basic Model of P Systems

A (cell-like) P system is a construct

⇧ = (O,C , µ,w1, . . . ,wm,R1, . . . ,Rm, fI , fO) where

I O is the alphabet of objects,

I C ⇢ O is the set of catalysts,

I µ is the membrane structure
(with m membranes),

I w1, . . . ,wm are multisets of objects present in
the m regions of µ at the beginning of a
computation,

I R1, . . . ,Rm are finite sets of rules, associated
with the membrane regions of µ,

The Basic Model of P Systems

I fI is the label of the membrane region where the
inputs are put at the beginning of a
computation (in the accepting/computing case).

I fO is the label of the membrane region from
which the outputs are taken at the end of a
halting computation (in the
generative/computing case).

fI = 0/fI = 0 indicates that the output/input is
taken from the environment.

Structure of a P System

1
environment (0)

2 3

4
Initial multiset: ca
ca!cb(here)d(in)ee(out)

Structure of a P System

1
environment (0)

2 3

4
cb

d

ee

The Rules in the Basic Models of P Systems

A rule u ! v is called

I cooperative if u � 2,

I non-cooperative if u = 1, and

I catalytic if it is of the form ca ! cv , where
c 2 C is a special object which never evolves
and never passes through a membrane, it just
assists object a to evolve to the multiset v .

Catalytic P system: catalytic rules as well as
non-cooperative rules.
Purely catalytic P system: only catalytic rules.

Derivation Modes

I sequential derivation mode (sequ):
exactly one rule is used in each step.

I asynchronous derivation mode (asyn):
an arbitrary number of rules is used in each step.

I maximally parallel derivation mode (max):
in each step, a multiset of rules from the sets
R1, . . . ,Rm of rules is chosen in such a way that
no further rule can be added to it so that the
obtained multiset would still be applicable to the
current configuration.

Other Variants of Maximal Derivation Modes

As the rules compete for the objects present in the
current configuration, we also consider the following:

I maximal number of objects derivation mode
(maxobjects):
in each derivation step, from the maximal
multisets of rules only those are taken which
a↵ect the maximal number of objects.

I maximal number of rules derivation mode
(maxrules):
in each derivation step, from the maximal
multisets of rules only those are taken which use
the maximal number of rules.

Set Derivation Modes

The derivation modes where we consider sets of
rules, i.e., each rule can be used at most once in
each step, are called set derivation modes.

I asynchronous set derivation mode (sasyn):
in each derivation step, one applicable set of
rules is used.

I set maximal derivation mode (smax):
in each step, a set of rules from the sets
R1, . . . ,Rm is chosen in such a way that no
further rule can be added to it so that the
obtained set of would still be applicable to the
current configuration.

Set Derivation Modes

I smaxobjects :
in each derivation step, from the maximal sets
of rules only those are taken which a↵ect the
maximal number of objects.

I smaxrules :
in each derivation step, from the maximal sets
of rules only those are taken which use the
maximal number of rules.

Computations in a P System

The membranes and the objects present in the
compartments of a system at a given time form a
configuration.

We start from the given initial configuration and
using the rules as explained above, we get
transitions among configurations.

A sequence of transitions forms a computation.

Halting in P Systems

A computation is called halting if it reaches a
configuration where no rule can be applied.

Halting with states means that the computation
reaches a configuration which fulfills a specific
(computable) condition.

Adult halting means that the P system reaches a
configuration which does not change any more with
the application of any (multi)set of rules.

Results of Halting Computations in P Systems

In generating P systems, with a halting computation
we associate a result, in the form of the number of
(di↵erent) objects present in region fO in the halting
configuration.

In accepting P systems, the input given in a
membrane region fI 6= 0, is accepted by a halting
computation.

Register Machines – a Computationally Complete
Model of Devices Computing with Numbers

A register machine is a tuple

M = (d ,B , l0, lh,R) where

I d is the number of registers,

I R is the set of instructions bijectively labeled by
elements of B ,

I l0 2 B is the initial label, and

I lh 2 B is the final label.
The instructions of M in R can be of the
following forms:

Register Machines – Instructions

I l1 : (ADD (j) , l2, l3),
with l1 2 B \ {lh}, l2, l3 2 B , 1  j  d .
Increase the value of register j by one, and
non-deterministically jump to instruction l2 or l3.
This instruction is usually called increment.

I l1 : (SUB (j) , l2, l3),
with l1 2 B \ {lh}, l2, l3 2 B , 1  j  d .
If the value of register j is zero then jump to
instruction l3, otherwise decrease the value of
register j by one and jump to instruction l2. The
two cases of this instruction are usually called
zero-test and decrement, respectively.

I lh : HALT. Halt the register machine program.

Register Machines – Configurations and Computations

A configuration of a register machine is described by
the contents of each register and by the value of the
current label, which indicates the next instruction to
be executed.
Computations start by executing the first instruction
of R (labeled with l0), and terminate with reaching
the HALT-instruction.

Register machines provide a computationally
complete model for computations with natural
numbers.

Two Variants of Energy Control

In symbol energy-controlled P systems, fixed integer
values of energy are assigned to each symbol in the
system, i.e., instead of O we consider the set OE

consisting of pairs [x , f (x)] with x 2 O and
f : O ! Z being a function assigning a unique
energy value to each symbol in O.
We extend f in the natural way to multisets over O.
The energy balance of a rule u ! v then is
f (v)� f (u).

In rule energy-controlled P systems, the energy is
directly assigned to the rules only.

Derivation Modes and Energy Control

All the derivation modes can also be used for

symbol energy-controlled P systems and

rule energy-controlled P systems.

In addition to the restrictions given by the

derivation mode itself, the multisets or sets

of rules then also must fulfill the condition of

yielding the minimal amount of energy.

Simple P Systems with Cooperative Rules

Simple symbol or rule energy-controlled P systems
with cooperative rules have only one membrane (the
skin membrane), which also serves as input and
output membrane, and cooperative rules of the form
u ! v ; |uv | is called its size.
⇧ = (OE ,w1,R1) where

I OE is the alphabet of objects with unique
integer energy values,

I w1 is the finite multiset of objects over OE

present in the skin membrane at the beginning
of a computation,

I R1 is a finite set of cooperative rules over OE .

Simple Symbol-Controlled P Systems with
Cooperative Rules

Theorem

For any register machine M = (d ,B , l0, lh,R), with
m  d being the number of decrementable
registers, we can construct a simple symbol
energy-controlled P system with cooperative rules of
size  3 ⇧ = (O,w1,R1) working in any of the
derivation modes sequ, asyn, sasyn,max , smax ,
maxrules ,maxobjects , smaxrules , smaxobjects
and simulating the computations of M such that

|R1|  |ADD1(R)|+ 2⇥ |ADD2(R)|+ 2⇥ |SUB(R)|+ 1.

Simple Symbol-Controlled P Systems with
Cooperative Rules

Proof. Let M = (m,B , l0, lh,R) be an arbitrary
register machine. We now construct a simple
symbol energy-controlled P system with cooperative
rules of size 3 simulating M in real time.
The number in register r is represented by the
corresponding number of symbol objects [or , 1].
We also assume all objects in B to have energy
value 1.
The number in between the brackets h and i
describes the total amount of energy consumed by
the corresponding rule.

Simple Symbol-Controlled P Systems with
Cooperative Rules

A deterministic ADD-instruction p : (ADD(r), q) is
simulated by the rule

[p, 1] ! [or , 1] [q, 1] h1i.

An ADD-instruction p : (ADD(r), q, s) is simulated
by the two rules

[p, 1] ! [or , 1] [q, 1] h1i and

[p, 1] ! [or , 1] [s, 1] h1i.

Simple Symbol-Controlled P Systems with
Cooperative Rules

A SUB-instruction p : (SUB(r), q, s) is simulated by
the rules

[p, 1] [or , 1] ! [q, 1] h�1i and

[p, 1] ! [s, 1] h0i.

As the total energy balance of the rule
[p, 1] [or , 1] ! [q, 1] is �1, in case the register is
not empty, it has priority over the rule
[p, 1] ! [s, 1], which has the total energy balance 0
and performs the zero-test case.

Simple Symbol-Controlled P Systems with
Cooperative Rules

For the final label lh, we take the rule
[lh, 1] ! [�, 0] h�1i.

In the case of a deterministic register machine, the
simulation by the P system is deterministic, too.

We also observe that the construction works for
every derivation mode.

Simple Rule-Controlled P Systems with
Cooperative Rules

Corollary

For any register machine M = (d ,B , l0, lh,R), with
m  d being the number of decrementable
registers, we can construct a simple rule
energy-controlled P system with cooperative rules of
size  3 ⇧ = (O,w1,R1) working in any of the
derivation modes sequ, asyn, sasyn,max , smax ,
max ,maxrules ,maxobjects , smax , smaxrules , smaxobjects
and simulating the computations of M such that

|R1|  |ADD1(R)|+ 2⇥ |ADD2(R)|+ 2⇥ |SUB(R)|+ 1.

Simple Rule-Controlled P Systems with
Cooperative Rules

Proof.

We can immediately take over the proof of the
preceding theorem by just omitting the energy
values assigned to the objects and taking the values
given between the brackets h and i as the energy
values assigned to the corresponding rules.

(Purely) Catalytic Energy-Controlled Simple P Systems

Theorem

For any register machine M = (d ,B , l0, lh,R), with
m  d being the number of decrementable registers,
we can construct a symbol or rule energy-controlled
simple catalytic or purely catalytic P system

⇧ = (OE ,CE ,w1 = [l0, 1] [c0, 1] . . . [cm, 1] ,R1)

working in any of the maximal derivation modes
max , smax ,maxrules , smaxrules ,maxobjects , smaxobjects
and simulating the computations of M such that

|R1|  |ADD1(R)|+ 2⇥ |ADD2(R)|+
4⇥ |SUB(R)|+ 2⇥m + 1.

(Purely) Catalytic Energy-Controlled Simple P Systems

Proof. Let M = (m,B , l0, lh,R) be an arbitrary
register machine. Again the number in register r is
represented by the corresponding number of symbol
objects [or , 1].
For each decrementable register r , 1  r  m, we
use one catalyst [cr , 1], and the catalyst [c0, 1] is
used for the program symbols.

Dm =
Q

i2[1..m] [di , 0] ,

Dm,r =
Q

i2[1..m]\{r} [di , 0] .

(Purely) Catalytic Energy-Controlled Simple P Systems

A deterministic ADD-instruction p : (ADD(r), q) is
simulated by the rule

[c0, 1] [p, 1] ! [c0, 1] [or , 1] [q, 1]Dm h1i.

An ADD-instruction p : (ADD(r), q, s) is simulated
by the two rules

[c0, 1] [p, 1] ! [c0, 1] [or , 1] [q, 1]Dm h1i

[c0, 1] [p, 1] ! [c0, 1] [or , 1] [s, 1]Dm h1i.

(Purely) Catalytic Energy-Controlled Simple P Systems

A SUB-instruction p : (SUB(r), q, s) is simulated by
the following rules:

1. [c0, 1] [p, 1] ! [c0, 1] [p̄, 1]Dm,r h0i;

2. [cr , 1] [or , 1] ! [cr , 1] [e,�3]Dm h�4i,
[c0, 1] [p̄, 1] ! [c0, 1] [p̂, 2] h1i,
[cr , 1] [p̄, 1] ! [cr , 1] [s, 1]Dm h0i; if there exists

at least one register symbol or , then the first
two rules yield the energy balance �3 and thus
supersede the third rule, which taken alone (and
leaving c0 idle) supersedes the second rule if it
cannot be combined with the first one.

(Purely) Catalytic Energy-Controlled Simple P Systems

Moreover, the catalysts ci , i 6= r , cannot be used
with a register object oi , as the rule

[ci , 1] [di , 0] ! [ci , 1] [e,�3]2 h�6i

has a higher negative energy value.

In the decrement case, we finish with a third step
using the rule

[c0, 1] [p̂, 2] ! [c0, 1] [q, 1]Dm h�1i.

We finally observe that, if M is deterministic, then
⇧ works in a deterministic way, too.

Conclusion

I We have considered several variants of P
systems with the multisets or sets of rules
chosen according to the derivation mode
together with the condition of yielding the
minimal total amount of energy.

I The simulations of register machines showing
computational completeness can even be carried
out in a deterministic way for deterministic
register machines.

I Many more variants wait for future research.

Muchas gracias!

Thank you very much!

Danke schön!

