Enhancing the
Simulation of
PDP Systems in
GPUs

Mi

Enhancing the Simulation of PDP Systems in GPUs

Miguel Angel Martinez-del-Amor, Andrés Doncel and Sevilla Team

"Research Group on Natural Computing, Dpt. of Computer Sciences and Artificial Intelligence
University of Seville (Spain)

w9

18th Brainstorming Week on Membrane Computing
February 2020 (Sevilla, Spain)

Enhancing the
Simulation of
PDP Systems in
GPUs

© GPU computing

@® GPU simulators for P systems
@® Population Dynamics P systems
@ Parallel simulator for PDP systems

@ Future work

Outline

Enhancing the .
Simulation of OUtllne
PDP Systems in

GPUs

GPU computing 6 GPU Compu’[ing

Enhancing the

Simulation of G P U CO m pUtl ng

PDP Systems in
GPUs

® Graphics Processor Unit (GPU)

Data-parallel computing model:
® SPMD programming model (Same Program for Muitiple Data)
® Shared memory system

® New programming languages: CUDA, OpenCL, DirectCompute

GPU computing

A GPU features thousand of cores

|

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

Ennancing the NVIDIA’s technology

Simulation of
PDP Systems in
GPUs

e CUDA programming model

Heterogeneous model: CPU (host) + GPU (device).
All threads execute the same code (kernel) in parallel.
Three-level hierarchy of threads (grid, blocks, threads).
Memory hierarchy (global, shared within block).

GPU computing

Thread Block 0 Thread Block 1 Thread Block N - 1

threadm> [o[1]2[3] 4] 5] 6] 7] I!HEHIIEEI I‘MEEIIEEI

input [threadID];
£loat y = fancix); 1 = : float y = func(x);

output [threadID] = y; outpuk(threadIDl = y; output [threadID] = y;

1W.-M. Hwu, D. Kirk. Programming massively parallel processors, Morgan Kaufmann, 2010.

P%?E?Si&i‘?f GPU: software vs hardware
ystems in
GPUs

software hardware

GPU computing

streaming
multiprocessor

R ey

thread CUDA
core

Enhancing the GPU: Scalable arChIteCtUre

Simulation of
PDP Systems in
GPUs

[Multithreaded CUDA Program

GPU computing

h

-

GPU with 2 Cores GPU with 4 Cores

cnran|tom1‘ MO‘&MIHMZ|MS

o | o o s
Bocks socks Blocks Block 7

A multithreaded program s partitioned into blocks of threads that execute Independently fram each
other, sa that 8 GEL with more cores will automatically executs the program In less time than 2 GRU
with fawer cores.

P%?E?iiﬁi‘?f NVIDIA GPUs evolution till 2018
ystems in
GPUs

Miguel A. "Fermi” “Fermi® “HKepler" "Kepler" "Maxwell" "Pascal® "Volta"
Harhes del Tesla GPU GFI00 GFI04 GEKI04 GEII0 GM200 GPIO0 GVI0D
Compute Capability 20 21 3.0 35 5.3 6.0 7.0
GFYcomputng Streaming Multiprocessors (SMs)| 16 16 8 15 24 56 84
FP32 CUDA Cores / SM 2 32 192 192 128 64 64
FP32 CUDA Cores 512 512 1536 | 2880 @ 3072 3584 5376
FP64 Units = = 512 960 96 1792 2688
Tensor Core Units 672
Threads / Warp 2 32 12 12 12 12 12
Max Warps / SM 43 48 64 64 64 64 64
Max Threads / SM 1536 1536 | 2048 = 2048 = 2048 = 2048 2048
Max Thread Blocks / SM 8 8 16 16 2 2 2
32-bit Registers / SM 32768 | 32768 = 65536 65536 65536 65536 65536
Max Registers / Thread 63 63 63 255 255 255 255
Max Threads / Thread Block 1024 | 1024 1024 1024 | 1024 1024 1024

Shared Memory Size Configs 16 KB 16 KB 16 KB 16 KB 95 KB 64 KB Config
48 KB 48 KB 32KB 32KB UpTp

Enhancing the

PDP Systems in
GPUs

GPU computing

Key attributes of the new GPUs:

GPU Memory Memory with NVLink Ray Tracing
Quadro RTX 8000 48GB 96GB 10 GigaRays/sec
Quadro RTX 6000 24GB 48GB 10 GigaRays/sec

Quadro RTX 5000 16GB 32GB 6 GigaRays/sec

CUDA Cores
4,608
4,608
3,072

Simulation of NVIDIA’s new GPU: Turing

Tensor Cores
576
576
384

Simuationol Why is the GPU interesting for simulating P systems?

PDP Systems in
GPUs

Martinez-del

Amor

GPU computing
® Desired properties:
® High level of parallelism (up to 4000 cores)
Shared memory system (easily synchronized)
Scalability and portability
Known languages: C/C++, Python, Fortran...
Cheap technology everywhere (cost and maintenance)

® Undesired properties:

® Best performance requires lot of research.
® Programming model imposes many restrictions

Enhancing the .
Simulation of OUtllne
PDP Systems in

GPUs

GPU simulators
for P systems

@® GPU simulators for P systems

Enhancing the

Simuision of GPU simulator workflow - Initialization (1)

PDP Systems in
GPUs
Miguel
Martine: i
] CPU (serial code) GPU (serial code)

Read P system information: GPU memory
+ P system model description

Structure of a GPU * Initial configuration P system info (rules, alphabet)

simulator

| Allocate memory in GPU }Z

P system configuration
(incl. all possible membranes to
be generated during
computation)

Auxiliary
(rule
selection)

| Copy P system information to GPU

| Copy P system initial config to GPU

~_

P%?E?iiﬁfn‘llf GPU simulator workflow - Simulation - Selection (Il)
ystems in
GPUs

CPU (serial code) GPU (serial code)
Read P system information: GPU memory
+ P system model description
+ Initial configuration P system info
Structure of a GPU P system configuration Auxiliary
simulator | Allocate memory in GPU |

| Copy P system information to GPU |

| Copy P system initial config to GPU |

| Call to Selection Kernel(s)

P%?E?ii&i‘ﬂ? GPU simulator workflow - Simulation - Execution (Il1)
ystems in
GPUs

CPU (serial code) GPU (serial code)
Read P system information: GPU memory
+ P system model description
+ Initial configuration P system info
Structure of a GPU P system configuration Auxiliary
simulator | Allocate memory in GPU |

| Copy P system information to GPU |

| Copy P system initial config to GPU |

| Call to Selection Kernel(s) |

| Call to Execution Kernel(s) |

¢

Enhancing the

Simultion of GPU simulator workflow - Wrap up (I1V)

PDP Systems in

GPUs
CPU (serial code) GPU (serial code)
Read P system information:
+ P system model description
+ Initial configuration P system info
Structure of a GPU P system configuration Auxiliary
simulator | Allocate memory in GPU |

(incl. all possible membrane to
be generated during
computation)

| Copy P system information to GPU |

| Copy P system initial config to GPU |

| Call to Selection Kernel(s)

| Call to Execution Kernel(s)

Copy P system configuration(s) back
to CPU memory

\/| Report outcome of simulation

P%?E?Si}i‘?f Simulation approaches
ystems in
GPUs

® Generic approach: simulator for a variant / class (under restrictions).

State of the art

® Specific approach: simulator for a certain family / model.

Enhancing the

Simulation of
PDP Systems in
GPUs

Miguel A.
Martinez-del
Amor

PMCGPU project:
//sourceforge.net/projects/pmcgpu

Simulator P system model and Peak GPU tested

Codename coverage speedup

. .) 7x (T)
PCUDA (G) Active membranes 1.67% (R) C1060
PCUDASAT (S) Active membranes 63x (R) C1060
TSPCUDASAT | (S) Tissue w/ cell division 10x (R) C1060
ABCDGPU (G) Population Dynamics 18.1x (T) K40

5x (R)

ENPS-GPU (G) Enzimatic Numerical 10x (T) GTX460M
CuSNP (G) Spiking Neural 50x (R) GTX750

G= Generic. S=Specific. T=Stress testing, R=Real examples.

http://sourceforge.net/projects/pmcgpu

Enhancing the .
Simulation of OUtllne
PDP Systems in

GPUs

PDP systems

@® Population Dynamics P systems

Enhancing the

_Sinuaionof Population Dynamics P systems
ystems in

GPUs

Skeletor} rules
u[vIE =5 [V]

Environment rules
(X)e,- L}(}ﬁ)ej1 e (Yh)ejh

PDP systems

Rules are applied in a maximal parallel way according to their probabilities

Enhancing the
Simulation of
PDP Systems in
GPUs

Miguel A.
Martinez-del
Amor

Simulation algorithm

Simulatin algorithms

Algorithms for probabilistic behaviour:
* BBB?: Binomial Block Based algorithm.

* DNDP3: Direct Non Deterministic algorithm with Probabilities.
e DCBA*: Direct distribution based on Consistent Blocks Algorithm.

General scheme
© Selection stage.
® Execution stage.

2A uniform framework for modeling based on P Systems. M.A. Colomer et al, Proc. BIC-TA, vol. 1 (2010), pp. 616-621.

3A simulation algorithm for multienvironment probabilistic P systems: A formal verification. M.A. Martinez-del-Amor et al, Int. Journal of
Foundations of Computer Science, 22, 1 (2011), 107-118.

4DCBA: Simulating P ion Dy ics P
pp. 291-310

y with Proportional Object Distribution. M.A. Martinez-del-Amor et al. Proc. 13! cmc (2012),

Enhancing the
Simulation of
PDP Systems in
GPUs

Rules classified into consistent blocks:

o Bi,oc,oc’,u,v

o Bej,x

Simulation algorithm

Enhancing the
Simulation of

PDP Systems in
GPUs
Rules classified into consistent blocks:
o Bi,oc,oc’,u,v
o Bej,x
Blocks vs competition

©al[b]}-5cP[]yanda[b]I 5 [Pl] = Bi—1,04=0,0/=+,u={a},v={b}

® 2 [b]3-—c[]f and a* [19— d® | = Competing rules!

Enhancing the
Simulation of
PDP Systems in
GPUs

Mi

DCBA’s general scheme

© Initialization: static distribution table
® Loop over Time

Selection stage:

Phase 1: Distribution
Phase 2: Maximality
Phase 3: Probability

Execution stage

OQ0®060

Enhancing the

_Sinuaionof DCBA: Direct distribution based on Consistent Blocks Algorithm

Constructing static table:

DCBA’s general scheme g; i {Zj Z};
@ Initialization: static distribution table B3=[bd%;
@® Loop over Time
(3 Selection stage: B1 B2 B3 Sum
(1) Phase 1: Distribution a - e
05) Phase 2: Maximality b ! !
0 Phase 3: Probability ¢ !
Q Execution stage d v

MIN

Enhancing the

_Sinuaionof DCBA: Direct distribution based on Consistent Blocks Algorithm

A.

Bi=[a c]°| B2=[a* b]%| B3=[b]

DCBA’s general scheme

1. Filters:
© Initialization: static distribution table
® Loop over Time B1 B2 Sum
(3) Selection stage: a 1/2 1/4
) (4] Phase 1: Distribution b 1
(5 Phase 2: Maximality c U
(6] Phase 3: Probability --
(7] Execution stage MIN

Enhancing the

_Sinuaionof DCBA: Direct distribution based on Consistent Blocks Algorithm

A.

Bi=[a c]°| B2=[a* b]%| B3=[b]

DCBA’s general scheme
2. Normalization:
© Initialization: static distribution table

® Loop over Time B1 B2 Sum

(5 Selection stage: a 1/212/3 1/4]|1/3 3/4
e o Phase 1: Distribution b 1

(5} Phase 2: Maximality c

(6) Phase 3: Probability --

(7] Execution stage MIN

Enhancing the

_Sinuaionof DCBA: Direct distribution based on Consistent Blocks Algorithm

A.

5 Bt =[a2 c|9| B2=[a* b)?| B3 = [b],

DCBA’s general scheme 3. Minimums:

© Initialization: static distribution table

) B1 B2 Sum

® Loop over Time a*10 12123 1/4|1/3 3/4
: Selection stage: b*5 1 1
Phase 1: Distribution ¢*90 1 1

Phase 2: Maximality --

Phase 3: Probability MIN 3

Q06060

Execution stage

Repeat for better accuracy

Simuationol DCBA: Direct distribution based on Consistent Blocks Algorithm
PDP Systems in
GPUs

DCBA’s general scheme

© Initialization: static distribution table
Random order to blocks

® Loop over Time Check Maximality

Selection stage:
Phase 1: Distribution B1x3, B2x1
Phase 2: Maximality
Phase 3: Probability

Execution stage

OQ0®060

Simuationol DCBA: Direct distribution based on Consistent Blocks Algorithm

PDP Systems in
GPUs

DCBA'’s general scheme From blocks to rules applications
@ Initialization: static distribution table Using multinomial distribution
® Loop over Time B1s6—
Selection stage: r = [o] [P}
Phase 1: Distribution ra=[a cff == [cPlf

2 =[a? ¢ 2L [a2]
Phase 2: Maximality r2=l[a cf =[]

Phase 3: Probability
Execution stage

M(6,0.7,0.2,0.1) = {3,2,1}

OQ0®060

Enhancing the .
Simulation of OUtllne
PDP Systems in

GPUs

Parallel sim.

@ Parallel simulator for PDP systems

Enhancing the .
Simulation of PreVIOUS Work
PDP Systems in
GPUs

DCBA in P-Lingua simulation framework

® The static table is a hash table

® DCBA: Simulating Population Dynamics P Systems with Proportional Object
Distribution. M.A. Martinez-del-Amor et al. Proc. 10" BWMC, 2, 27-56 (2012)

General design

Enhancing the .
Simulation of PreVIOUS Work
PDP Systems in
GPUs

DCBA in P-Lingua simulation framework

® The static table is a hash table

® DCBA: Simulating Population Dynamics P Systems with Proportional Object
Distribution. M.A. Martinez-del-Amor et al. Proc. 10" BWMC, 2, 27-56 (2012)

C++ and OpenMP implementations

General design

® The static table is not implemented (virtual table)

® Parallel Simulation of Probabilistic P Systems on Multicore Platforms. M.A.
Martinez-del-Amor et al. Proc. 10" BWMC, 2, 17-26 (2012)

P%?E?Si&i‘?f A CUDA general design
ystems in
GPUs

THREAD BLOCKS: DIM X (ENVIRONMENTS)

How to distribute the 0
parallelism? o || [_RuEBoas | RULE BLOCKS
S || ——— _
e Thread blocks: DCBA to Al == ,

. . 2 | AR) THREADS
simulations and > . T.Block (0,0) ST Block(m,O)
environments in parallel. =P : :

® Threads: DCBA steps to g | RULE BLOCKS A (RULE BLOCKS
General design . o £ . .
blocks in parallel and @ || . _
synchronously. 2| (wees . aReaos
% T. Block (0,s) T. Block (m,s)
=

Typical number of simulations: 50-100
Typical number of environments: 2-20
Typical number of rule blocks: 500—100,000

Enhancing the
Simulation of P h ase 1
PDP Systems in
GPUs

Each part in a separate kernel

® Kernel for Filters
® Kernel for Normalization and minimums: atomic operations

e Kernel for Updating and filters: atomic operations

Phases

Enhancing the
Simulation of P h ase 2
PDP Systems in
GPUs

The most challenging part when parallelizing by blocks

® |nherently sequential (block after block).
® Requires random order over rule blocks (simulated by CUDA scheduler).
® |mprovement: pre-calculate block competitions on shared memory.

Phases

Enhancing the

Simulation of P h ase 2

PDP Systems in
GPUs
Mig! A.
\ del
Amor BO B1 Bz B3
LtHs [[AiBiC| A} | DE | {AiB; |
order - T
i, e Iteration O
tHs AB C| {00 | DE {0,000,1)
order [0 —]
Iteration 1
IHS AB C | (0,00 | D E]1,000,1)
order [0 1 . Bl
Prases Iteration 2
LHS AB C (0,00 @ DE [1,0)0,1)
oder [0 141 10 =
Iteration 3
IHS AB C| (0,00 | DE (1,000,1)
oder 002

Enhancing the

Simulation of P h ase 3

PDP Systems in
GPUs

A random number generator on the GPU . / \

® Block to rules applications: multinomial distribution. . A....;

® Requires generation of binomial random variates:

X ~ B(n,p). -
® Qur implementation: CURNG_BINOMIAL library m
® |f n-p > 10, normal approximation (using CU_RAND library) . | 1
® Else, BINV' algorithm (O(n- p)). o]

500 % X ~ B(40,0.2)

! Binomial random variate generation. V. Kachitvichyanukul, B.W. Schmeiser. Comm. ACM, 31, 2,
216-222 (1988)

Enhancing the
Simulation of WO rkﬂOW
PDP Systems in
GPUs

Pipeline

PLlnguaCore Bmary File Simulator CSV File
~ Compiler Compiler

Simulator

Analyze Parameters Initialize PDP Structures Slmulahon Write
Analyze Binary File Initialize RNG States Steps Results

Enhancing the
Simulation of
PDP Systems in
GPUs

iguel A.
Martinez-del
Amor

Phase 1:
Filters

Phases

Simulation Step

X Accuracy

Phase 1:
Normalization

Phase 1:
Update

Pipeline

{

Phase 2:
Maximality

)

Phase 3:
Probability

Phase 4:
Execution

Enhancing the .
Simulation of OUtllne
PDP Systems in

GPUs

@ Parallel simulator for PDP systems

Improving the simulator

R micro-DCBA

PDP Systems in »
GPUs Competition

Let B; and B; be two distinct blocks with LHS(B;) = (hj, o, uj, v;) and
LHS(B;) = (hy, 04, uj, v;):
¢ Direct competition: B; and B; directly compete if one of the following holds:
° ifh = hj/\(X,' = oy, then viny; 750
* if parent(h;) = parent(h;), then u;Nu; # 0
® if parent(h;) = h;, then u;Nv; # 0.
* Indirect competition: B; and B; indirectly compete if there exists a distinct block
that directly competes with B; and directly (or indirectly) competes with B;.

Improving the simulator

e Competition: B; and B; compete if and only if directly or indirectly compete.

R micro-DCBA

PDP Systems in »
GPUs Competition

LetG=(V,E):
® V:rule blocks
® E: blocks that compete directly

Competitive partition = finding connected components.
u-DCBA (micro-DCBA): running DCBA to each set of the partition. This gives another
level of parallelism.

s Independent blocks: they do not compete with any other blocks. High level of
parallelism.

® By definition, communication rules are independent.

micro-DCBA

Componentes conexas en paralelo

Hooking + Jumping®:

[12[56]25][13[45][32]46 | /x. A
O
./\.

6J. Soman, K. Kothapalli y P. J. Narayanan. “Some GPU Algorithms for Graph Connected Components and
Spanning Tree". En: Parallel Processing Letters 20 (2010), pags. 325-339.

O—@

21./37

micro-DCBA

Componentes conexas en paralelo
Hooking + Jumping®:

-2---
[12 56 25] 13] 45][32] 46 | /K. A

o ®

o-—© O—@®

6J. Soman, K. Kothapalli y P. J. Narayanan. “Some GPU Algorithms for Graph Connected Components and
Spanning Tree". En: Parallel Processing Letters 20 (2010), pags. 325-339.

21./37

micro-DCBA

Componentes conexas en paralelo

Hooking + Jumping®:

[L
1 2 3 4 5 6 / —
[12 56] 25] 13 | 45 | 32 | 46 | .;.E. A

O-—

o-— 0

6J. Soman, K. Kothapalli y P. J. Narayanan. “Some GPU Algorithms for Graph Connected Components and
Spanning Tree". En: Parallel Processing Letters 20 (2010), pags. 325-339.

21,

/37

micro-DCBA
Componentes conexas en paralelo

Hooking + Jumping®:

1 2 3 4 5 6 /‘\
[12]56] 25] 13] 45| 32 | 46 | @ L.

o ®

o=—© @

6J. Soman, K. Kothapalli y P. J. Narayanan. “Some GPU Algorithms for Graph Connected Components and
Spanning Tree". En: Parallel Processing Letters 20 (2010), pags. 325-339.

21,

/37

micro-DCBA

Resultados
12,00x

10,00x

8,00x

4,00x
2,00x I
0,00x
10000 20000 60000

Objects (g=membranes)
Resultados en NVIDIA Tesla K40c

Speedup

B ABCDGPU
micro-DCBA

120000/g=4

Enhancing the
Simulation of
PDP Systems in
GPUs

Martinez-del

Amor

® Example: Bearded Vulture in the Pyrenees model.

® PDP system with 1 environment and 439 rule blocks.
® Results with 100 simulations on an NVIDIA GTX 950M.

Initializing states for RNG: 8ms
One step fo computation: 352Ls
A transfer of results: 250us
Writing results in a file: 16ms

Experimental review

Enhancing the
Simulation of |mpr0V€mentS
PDP Systems in
GPUs

® Fast initialization of RNG

® Qverlapping sending results and execution.
® Filtering results

Improving the simulator

Optimizaciones
Inicio rapido RNG

iMas entornos?

10000
1000
I
E 100
g 129,26x
S
10
1

1000 1200 1500

mg_size (parallel_sim*env)

196,21x

2000

M base (ms)
m fast (ms)

26,/ 37

Optimizaciones

Solapamiento envio y ejecucién®

et

Copy Engine [H20 -2 [0 3] [021-2Jo2n -3
El

8M. Harris. How to Overlap Data Transfers in CUDA C/CH+.
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/. [Online; Acceso el 13-5-2018]. 2012.

o e 27,/37 =

Q¥

Optimizaciones

Solapamiento envio y ejecucién

Auxiliar configuration copy

Auxiliar configuration copy
(device)

(device to host)

[Memcpy DtoD [asy...
1 kernel phasel ...

Memcpy DtoH [async]

kernel phase1 no...

kernel_phase_normaliz... kernel_ phase1_up...

AW

«
While step n configuration is copied to host,
Next step is computed in parallel

Computation step n end Next comptut:tion step
(device) stal

28,/37

Optimizaciones
Filtro de resultados
Entrada: Ternas entorno, membrana y objeto

0O 00
1 -4
- - 213,06}
O 1 X{3,1}

Filtro de resultados

= =30,/37 =

X-Ye2

Enhancing the .
Simulation of OUtllne
PDP Systems in

GPUs

Future work

@ Future work

Enhancing the

Simulation of Work under consideration

PDP Systems in
GPUs

Mi

® Fully automated Workflow: MeCoSim + P-Lingua5 + ABCDGPU

® A manual workflow was published in: L. Valencia-Cabrera, M.A. Martinez-del-Amor,
|. Pérez-Hurtado. A Simulation Workflow for Membrane Computing: From MeCoSim
to PMCGPU Through P-Lingua. Enjoying Natural Computing, Essays Dedicated to
Mario de Jesus Pérez-Jiménez on the Occasion of His 70th Birthday, Lecture Notes
in Computer Science, 11270 (2018), 291-303.

® Simulation in the cloud (SaaS)
® Auto-generation of CUDA code from P-Lingua 5

Future work

Simuationol Thank you for your attention
PDP Systems in
GPUs

B Q8A&S?

