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© GPU computing

@® GPU simulators for P systems
@® Population Dynamics P systems
@ Parallel simulator for PDP systems

@ Future work
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PDP Systems in
GPUs

® Graphics Processor Unit (GPU)

Data-parallel computing model:
® SPMD programming model (Same Program for Muitiple Data)
® Shared memory system

® New programming languages: CUDA, OpenCL, DirectCompute

GPU computing

A GPU features thousand of cores

_|_

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES




Ennancing the NVIDIA’s technology

Simulation of
PDP Systems in
GPUs

e CUDA programming model

Heterogeneous model: CPU (host) + GPU (device).
All threads execute the same code (kernel) in parallel.
Three-level hierarchy of threads (grid, blocks, threads).
Memory hierarchy (global, shared within block).

GPU computing

Thread Block 0 Thread Block 1 Thread Block N - 1

threadm> [ o[ 1]2[ 3] 4] 5] 6] 7] I!HEHIIEEI I‘MEEIIEEI

input [threadID];
£loat y = fancix); 1 = : float y = func(x);

output [threadID] = y; outpuk(threadIDl = y; output [threadID] = y;

1W.-M. Hwu, D. Kirk. Programming massively parallel processors, Morgan Kaufmann, 2010.



P%?E?Si&i‘?f GPU: software vs hardware
ystems in
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software hardware

GPU computing

streaming
multiprocessor

R ey

thread CUDA
core




Enhancing the GPU: Scalable arChIteCtUre

Simulation of
PDP Systems in
GPUs

[ Multithreaded CUDA Program

GPU computing

h

-

GPU with 2 Cores GPU with 4 Cores

cnran|tom1‘ MO‘&MIHMZ|MS

o | o o s
Bocks socks Blocks  Block 7

A multithreaded program s partitioned into blocks of threads that execute Independently fram each
other, sa that 8 GEL with more cores will automatically executs the program In less time than 2 GRU
with fawer cores.



P%?E?iiﬁi‘?f NVIDIA GPUs evolution till 2018
ystems in
GPUs

Miguel A. "Fermi” “Fermi® “HKepler" "Kepler" "Maxwell" "Pascal® "Volta"
Harhes del Tesla GPU GFI00 GFI04 GEKI04 GEII0 GM200 GPIO0 GVI0D
Compute Capability 20 21 3.0 35 5.3 6.0 7.0
GFYcomputng Streaming Multiprocessors (SMs)| 16 16 8 15 24 56 84
FP32 CUDA Cores / SM 2 32 192 192 128 64 64
FP32 CUDA Cores 512 512 1536 | 2880 @ 3072 3584 5376
FP64 Units = = 512 960 96 1792 2688
Tensor Core Units 672
Threads / Warp 2 32 12 12 12 12 12
Max Warps / SM 43 48 64 64 64 64 64
Max Threads / SM 1536 1536 | 2048 = 2048 = 2048 = 2048 2048
Max Thread Blocks / SM 8 8 16 16 2 2 2
32-bit Registers / SM 32768 | 32768 = 65536 65536 65536 65536 65536
Max Registers / Thread 63 63 63 255 255 255 255
Max Threads / Thread Block 1024 | 1024 1024 1024 | 1024 1024 1024

Shared Memory Size Configs 16 KB 16 KB 16 KB 16 KB 95 KB 64 KB Config
48 KB 48 KB 32KB 32KB UpTp
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Key attributes of the new GPUs:

GPU Memory Memory with NVLink Ray Tracing
Quadro RTX 8000 48GB 96GB 10 GigaRays/sec
Quadro RTX 6000  24GB 48GB 10 GigaRays/sec

Quadro RTX 5000 16GB 32GB 6 GigaRays/sec

CUDA Cores
4,608
4,608
3,072

Simulation of NVIDIA’s new GPU: Turing

Tensor Cores
576
576
384



Simuationol Why is the GPU interesting for simulating P systems?

PDP Systems in
GPUs

Martinez-del

Amor

GPU computing
® Desired properties:
® High level of parallelism (up to 4000 cores)
Shared memory system (easily synchronized)
Scalability and portability
Known languages: C/C++, Python, Fortran...
Cheap technology everywhere (cost and maintenance)

® Undesired properties:

® Best performance requires lot of research.
® Programming model imposes many restrictions
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@® GPU simulators for P systems



Enhancing the

Simuision of GPU simulator workflow - Initialization (1)

PDP Systems in
GPUs
Miguel
Martine: i
] CPU (serial code) GPU (serial code)

Read P system information: GPU memory
+ P system model description

Structure of a GPU * Initial configuration P system info (rules, alphabet)

simulator

| Allocate memory in GPU }Z

P system configuration
(incl. all possible membranes to
be generated during
computation)

Auxiliary
(rule
selection)

| Copy P system information to GPU

| Copy P system initial config to GPU

~_



P%?E?iiﬁfn‘llf GPU simulator workflow - Simulation - Selection (Il)
ystems in
GPUs

CPU (serial code) GPU (serial code)
Read P system information: GPU memory
+ P system model description
+ Initial configuration P system info
Structure of a GPU P system configuration Auxiliary
simulator | Allocate memory in GPU |

| Copy P system information to GPU |

| Copy P system initial config to GPU |

| Call to Selection Kernel(s)




P%?E?ii&i‘ﬂ? GPU simulator workflow - Simulation - Execution (Il1)
ystems in
GPUs

CPU (serial code) GPU (serial code)
Read P system information: GPU memory
+ P system model description
+ Initial configuration P system info
Structure of a GPU P system configuration Auxiliary
simulator | Allocate memory in GPU |

| Copy P system information to GPU |

| Copy P system initial config to GPU |

| Call to Selection Kernel(s) |

| Call to Execution Kernel(s) |

¢




Enhancing the

Simultion of GPU simulator workflow - Wrap up (I1V)

PDP Systems in

GPUs
CPU (serial code) GPU (serial code)
Read P system information:
+ P system model description
+ Initial configuration P system info
Structure of a GPU P system configuration Auxiliary
simulator | Allocate memory in GPU |

(incl. all possible membrane to
be generated during
computation)

| Copy P system information to GPU |

| Copy P system initial config to GPU |

| Call to Selection Kernel(s)

| Call to Execution Kernel(s)

Copy P system configuration(s) back
to CPU memory

\/| Report outcome of simulation




P%?E?Si}i‘?f Simulation approaches
ystems in
GPUs

® Generic approach: simulator for a variant / class (under restrictions).

State of the art

® Specific approach: simulator for a certain family / model.



Enhancing the

Simulation of
PDP Systems in
GPUs

Miguel A.
Martinez-del
Amor

PMCGPU project:
//sourceforge.net/projects/pmcgpu

Simulator P system model and Peak GPU tested

Codename coverage speedup

. . ) 7x (T)
PCUDA (G) Active membranes 1.67% (R) C1060
PCUDASAT (S) Active membranes 63x (R) C1060
TSPCUDASAT | (S) Tissue w/ cell division 10x (R) C1060
ABCDGPU (G) Population Dynamics 18.1x (T) K40

5x (R)

ENPS-GPU (G) Enzimatic Numerical 10x (T) GTX460M
CuSNP (G) Spiking Neural 50x (R) GTX750

G= Generic. S=Specific. T=Stress testing, R=Real examples.



http://sourceforge.net/projects/pmcgpu
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PDP systems

@® Population Dynamics P systems



Enhancing the

_Sinuaionof Population Dynamics P systems
ystems in

GPUs

Skeletor} rules
u[vIE =5 [V ]

Environment rules
(X)e,- L}(}ﬁ )ej1 e (Yh)ejh

PDP systems

Rules are applied in a maximal parallel way according to their probabilities
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Simulation algorithm

Simulatin algorithms

Algorithms for probabilistic behaviour:
* BBB?: Binomial Block Based algorithm.

* DNDP3: Direct Non Deterministic algorithm with Probabilities.
e DCBA*: Direct distribution based on Consistent Blocks Algorithm.

General scheme
© Selection stage.
® Execution stage.

2A uniform framework for modeling based on P Systems. M.A. Colomer et al, Proc. BIC-TA, vol. 1 (2010), pp. 616-621.

3A simulation algorithm for multienvironment probabilistic P systems: A formal verification. M.A. Martinez-del-Amor et al, Int. Journal of
Foundations of Computer Science, 22, 1 (2011), 107-118.

4DCBA: Simulating P ion Dy ics P
pp. 291-310

y with Proportional Object Distribution. M.A. Martinez-del-Amor et al. Proc. 13! cmc (2012),
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Rules classified into consistent blocks:

o Bi,oc,oc’,u,v

o Bej,x

Simulation algorithm
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Rules classified into consistent blocks:
o Bi,oc,oc’,u,v
o Bej,x
Blocks vs competition

©al[b]}-5cP[]yanda[b]I 5 [Pl] = Bi—1,04=0,0/=+,u={a},v={b}

® 2 [b]3-—c[]f and a* [ 19— d® | = Competing rules!
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DCBA’s general scheme

© Initialization: static distribution table
® Loop over Time

Selection stage:

Phase 1: Distribution
Phase 2: Maximality
Phase 3: Probability

Execution stage

OQ0®060



Enhancing the

_Sinuaionof DCBA: Direct distribution based on Consistent Blocks Algorithm

Constructing static table:

DCBA’s general scheme g; i {Zj Z};
@ Initialization: static distribution table B3=[bd%;
@® Loop over Time
(3 Selection stage: B1 B2 B3  Sum
(1) Phase 1: Distribution a - e
05) Phase 2: Maximality b ! !
0 Phase 3: Probability ¢ !
Q Execution stage d v

MIN



Enhancing the

_Sinuaionof DCBA: Direct distribution based on Consistent Blocks Algorithm

A.

Bi=[a c]°| B2=[a* b]%| B3=[b ]

DCBA’s general scheme

1. Filters:
© Initialization: static distribution table
® Loop over Time B1 B2 Sum
(3) Selection stage: a 1/2 1/4
) (4] Phase 1: Distribution b 1
(5 Phase 2: Maximality c U
(6] Phase 3: Probability --
(7] Execution stage MIN



Enhancing the

_Sinuaionof DCBA: Direct distribution based on Consistent Blocks Algorithm

A.

Bi=[a c]°| B2=[a* b]%| B3=[b ]

DCBA’s general scheme
2. Normalization:
© Initialization: static distribution table

® Loop over Time B1 B2 Sum

(5 Selection stage: a 1/212/3 1/4]|1/3 3/4
e o Phase 1: Distribution b 1

(5} Phase 2: Maximality c

(6) Phase 3: Probability --

(7] Execution stage MIN



Enhancing the

_Sinuaionof DCBA: Direct distribution based on Consistent Blocks Algorithm

A.

5 Bt =[a2 c|9| B2=[a* b)?| B3 = [b ],

DCBA’s general scheme 3. Minimums:

© Initialization: static distribution table

) B1 B2 Sum

® Loop over Time a*10 12123 1/4|1/3 3/4
: Selection stage: b*5 1 1
Phase 1: Distribution ¢*90 1 1

Phase 2: Maximality --

Phase 3: Probability MIN 3

Q06060

Execution stage

Repeat for better accuracy



Simuationol DCBA: Direct distribution based on Consistent Blocks Algorithm
PDP Systems in
GPUs

DCBA’s general scheme

© Initialization: static distribution table
Random order to blocks

® Loop over Time Check Maximality

Selection stage:
Phase 1: Distribution B1x3, B2x1
Phase 2: Maximality
Phase 3: Probability

Execution stage

OQ0®060



Simuationol DCBA: Direct distribution based on Consistent Blocks Algorithm

PDP Systems in
GPUs

DCBA'’s general scheme From blocks to rules applications
@ Initialization: static distribution table Using multinomial distribution
® Loop over Time B1s6—
Selection stage: r = [ o] [P}
Phase 1: Distribution ra=[a cff == [cPlf

2 =[a? ¢ 2L [a2]
Phase 2: Maximality r2=l[a cf =[]

Phase 3: Probability
Execution stage

M(6,0.7,0.2,0.1) = {3,2,1}

OQ0®060
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Parallel sim.

@ Parallel simulator for PDP systems
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DCBA in P-Lingua simulation framework

® The static table is a hash table

® DCBA: Simulating Population Dynamics P Systems with Proportional Object
Distribution. M.A. Martinez-del-Amor et al. Proc. 10" BWMC, 2, 27-56 (2012)

General design
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DCBA in P-Lingua simulation framework

® The static table is a hash table

® DCBA: Simulating Population Dynamics P Systems with Proportional Object
Distribution. M.A. Martinez-del-Amor et al. Proc. 10" BWMC, 2, 27-56 (2012)

C++ and OpenMP implementations

General design

® The static table is not implemented (virtual table)

® Parallel Simulation of Probabilistic P Systems on Multicore Platforms. M.A.
Martinez-del-Amor et al. Proc. 10" BWMC, 2, 17-26 (2012)



P%?E?Si&i‘?f A CUDA general design
ystems in
GPUs

THREAD BLOCKS: DIM X (ENVIRONMENTS)

How to distribute the 0
parallelism? o || [_RuEBoas | RULE BLOCKS
S || ——— \_
e Thread blocks: DCBA to Al == ,

. . 2 | AR ) THREADS
simulations and > . T.Block (0,0) ST Block(m,O)
environments in parallel. =P : :

® Threads: DCBA steps to g | RULE BLOCKS A ( RULE BLOCKS
General design . o £ . .
blocks in parallel and @ || . _
synchronously. 2| (wees . aReaos
% T. Block (0,s) T. Block (m,s)
=

Typical number of simulations: 50-100
Typical number of environments: 2-20
Typical number of rule blocks: 500—100,000
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Each part in a separate kernel

® Kernel for Filters
® Kernel for Normalization and minimums: atomic operations

e Kernel for Updating and filters: atomic operations

Phases
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The most challenging part when parallelizing by blocks

® |nherently sequential (block after block).
® Requires random order over rule blocks (simulated by CUDA scheduler).
® |mprovement: pre-calculate block competitions on shared memory.

Phases
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Mig! A.
\ del
Amor BO B1 Bz B3
LtHs [[AiBiC| A} | DE | {AiB; |
order - T
i, e Iteration O
tHs AB C| {00 | DE {0,000,1)
order [0 — ]
Iteration 1
IHS AB C | (0,00 | D E ]1,000,1)
order [0 1 . Bl
Prases Iteration 2
LHS AB C (0,00 @ DE [1,0)0,1)
oder [0 141 10 =
Iteration 3
IHS AB C| (0,00 | DE (1,000,1)
oder 002
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PDP Systems in
GPUs

A random number generator on the GPU . / \

® Block to rules applications: multinomial distribution. . A....;

® Requires generation of binomial random variates:

X ~ B(n,p). -
® Qur implementation: CURNG_BINOMIAL library m
® |f n-p > 10, normal approximation (using CU_RAND library) . | 1
® Else, BINV' algorithm (O(n- p)). o]

500 % X ~ B(40,0.2)

! Binomial random variate generation. V. Kachitvichyanukul, B.W. Schmeiser. Comm. ACM, 31, 2,
216-222 (1988)
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Pipeline

PLlnguaCore Bmary File Simulator CSV File
~ Compiler Compiler

Simulator

Analyze Parameters Initialize PDP Structures Slmulahon Write
Analyze Binary File Initialize RNG States Steps Results
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Phase 1:
Filters

Phases

Simulation Step

X Accuracy

Phase 1:
Normalization

Phase 1:
Update

Pipeline

{

Phase 2:
Maximality

)

Phase 3:
Probability

Phase 4:
Execution
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@ Parallel simulator for PDP systems

Improving the simulator



R micro-DCBA

PDP Systems in »
GPUs Competition

Let B; and B; be two distinct blocks with LHS(B;) = (hj, o, uj, v;) and
LHS(B;) = (hy, 04, uj, v;):
¢ Direct competition: B; and B; directly compete if one of the following holds:
° ifh = hj/\(X,' = oy, then viny; 750
* if parent(h;) = parent(h;), then u;Nu; # 0
® if parent(h;) = h;, then u;Nv; # 0.
* Indirect competition: B; and B; indirectly compete if there exists a distinct block
that directly competes with B; and directly (or indirectly) competes with B;.

Improving the simulator

e Competition: B; and B; compete if and only if directly or indirectly compete.



R micro-DCBA

PDP Systems in »
GPUs Competition

LetG=(V,E):
® V:rule blocks
® E: blocks that compete directly

Competitive partition = finding connected components.
u-DCBA (micro-DCBA): running DCBA to each set of the partition. This gives another
level of parallelism.

s Independent blocks: they do not compete with any other blocks. High level of
parallelism.

® By definition, communication rules are independent.



micro-DCBA

Componentes conexas en paralelo

Hooking + Jumping®:

[12[56]25][13[45][32]46 | /x. A
O
./\.

6J. Soman, K. Kothapalli y P. J. Narayanan. “Some GPU Algorithms for Graph Connected Components and
Spanning Tree". En: Parallel Processing Letters 20 (2010), pags. 325-339.

O—@

21./37



micro-DCBA

Componentes conexas en paralelo
Hooking + Jumping®:

-2---
[12 56 25] 13 ] 45][ 32 ] 46 | /K. A

o ®

o-—© O—@®

6J. Soman, K. Kothapalli y P. J. Narayanan. “Some GPU Algorithms for Graph Connected Components and
Spanning Tree". En: Parallel Processing Letters 20 (2010), pags. 325-339.

21./37



micro-DCBA

Componentes conexas en paralelo

Hooking + Jumping®:

[ L
1 2 3 4 5 6 / —
[12 56 ] 25] 13 | 45 | 32 | 46 | .;.E. A

O-—

o-— 0

6J. Soman, K. Kothapalli y P. J. Narayanan. “Some GPU Algorithms for Graph Connected Components and
Spanning Tree". En: Parallel Processing Letters 20 (2010), pags. 325-339.

21,

/37



micro-DCBA
Componentes conexas en paralelo

Hooking + Jumping®:

1 2 3 4 5 6 /‘\
[12]56 ] 25] 13 ] 45| 32 | 46 | @ L.

o ®

o=—© @

6J. Soman, K. Kothapalli y P. J. Narayanan. “Some GPU Algorithms for Graph Connected Components and
Spanning Tree". En: Parallel Processing Letters 20 (2010), pags. 325-339.

21,

/37



micro-DCBA

Resultados
12,00x

10,00x

8,00x

4,00x
2,00x I
0,00x
10000 20000 60000

Objects (g=membranes)
Resultados en NVIDIA Tesla K40c

Speedup

B ABCDGPU
micro-DCBA

120000/g=4
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® Example: Bearded Vulture in the Pyrenees model.

® PDP system with 1 environment and 439 rule blocks.
® Results with 100 simulations on an NVIDIA GTX 950M.

Initializing states for RNG: 8ms
One step fo computation: 352Ls
A transfer of results: 250us
Writing results in a file: 16ms

Experimental review
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® Fast initialization of RNG

® Qverlapping sending results and execution.
® Filtering results

Improving the simulator



Optimizaciones
Inicio rapido RNG

iMas entornos?

10000
1000
I
E 100
g 129,26x
S
10
1

1000 1200 1500

mg_size (parallel_sim*env)

196,21x

2000

M base (ms)
m fast (ms)

26,/ 37



Optimizaciones

Solapamiento envio y ejecucién®

et

Copy Engine [H20 -2 [0 3] [021-2Jo2n -3
El

8M. Harris. How to Overlap Data Transfers in CUDA C/CH+.
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/. [Online; Acceso el 13-5-2018]. 2012.

o e 27,/37 =

Q¥



Optimizaciones

Solapamiento envio y ejecucién

Auxiliar configuration copy

Auxiliar configuration copy
(device)

(device to host)

[ Memcpy DtoD [asy...
1 kernel phasel ...

Memcpy DtoH [async]

kernel phase1 no...

kernel_phase_normaliz... kernel_ phase1_up...

AW

«
While step n configuration is copied to host,
Next step is computed in parallel

Computation step n end Next comptut:tion step
(device) stal

28,/37



Optimizaciones
Filtro de resultados
Entrada: Ternas entorno, membrana y objeto

0O 00
1 -4
- - 213,06}
O 1 X{3,1}



Filtro de resultados

= =30,/37 =

X-Ye2



Enhancing the .
Simulation of OUtllne
PDP Systems in

GPUs

Future work

@ Future work
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® Fully automated Workflow: MeCoSim + P-Lingua5 + ABCDGPU

® A manual workflow was published in: L. Valencia-Cabrera, M.A. Martinez-del-Amor,
|. Pérez-Hurtado. A Simulation Workflow for Membrane Computing: From MeCoSim
to PMCGPU Through P-Lingua. Enjoying Natural Computing, Essays Dedicated to
Mario de Jesus Pérez-Jiménez on the Occasion of His 70th Birthday, Lecture Notes
in Computer Science, 11270 (2018), 291-303.

® Simulation in the cloud (SaaS)
® Auto-generation of CUDA code from P-Lingua 5

Future work



Simuationol Thank you for your attention
PDP Systems in
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