ON THE EFFICIENT SIMULATION OF POLARIZATIONLESS P SYSTEMS WITH ACTIVE MEMBRANES

Zsolt Gazdag

Institute of Informatics University of Szeged

Gábor Kolonits Faculty of Informatics Eötvös Loránd Universit

17th BWMC, February 5, 2018 - February 8, 2018, Seville, Spain

MOTIVATION

Pauns's conjecture:

Active membranes without polarization and non-elementary division characterise the class **P**.

- Challenging to prove even if just division or dissolution rules are allowed
	- **Proved in [2009, Woods, Murphy, Pérez-Jiménez, Riscos-Núñez]**
		- **Diect division graphs are used**
		- A particular computation is simulated
		- Only "important" membranes are explicitly simulated
- **Dur aim** is a representation with witch we can answer the following question efficiently:
	- Which and how many objects are released to the parent membrane by the elementary membranes during a particular step of the system?

PRELIMINARIES

- ▶ We consider restrictied P systems with active membranes:
	- **no polarization**
	- \triangleright the membrane structure is linearly nested,
	- **Details and dissolution rules are employed,**
	- **the computations are confluent, and**
	- **no object can divide and dissolve the same membrane**
		- E.g. $[a]_h \rightarrow [b]_h [c]_h$ and $[a]_h \rightarrow d$ is not possible
- ▶ We simulate a particular computation:
	- **D** division has priority over dissolution
		- E.g. $[a]_h \rightarrow [b]_h[c]_h$, $[e]_h \rightarrow f$ implies $[a e]_h \Rightarrow [b e]_h[c e]_h \rightarrow b f c f$
	- similar rules are lexicographically ordered
		- E.g. $[a]_h \to [b]_h[c]_h$ and $[e]_h \to [f]_h[g]_h$ implies $[a e]_h \to [b e]_h[c e]_h \to [c e]_h$ $[b f]_h [b g]_h [c f]_h [c g]_h$

PRELIMINARIES

- Object division graph (odg)
	- **Example:**
		- Rules: $[a] \rightarrow [b][c]$, $b \rightarrow [e][f]$, $c \rightarrow [f][i]$, $[e] \rightarrow [g][h]$
		- \triangleright No division by the rest of the objects

 \triangleright Notice: Labels of inner nodes are not needed to give the polynomial

 \triangleright The divisions: $[a] \Rightarrow [b][c] \Rightarrow [e][f]$ $[f][i] \Rightarrow [g][h][f][f][i]$

Object division polynomial (odp)

 $gx^3 + hx^3 + (2fx^2) + ix^2$

two $[f]'s$ are created in two steps

- \triangleright Notice: Labels of inner nodes are not needed to give the polynomial
- The divisions: $[a] \Rightarrow [b][c] \Rightarrow [e][f][f][i] \Rightarrow [g][h][f][f][i]$
- \triangleright The two [f]'s are created in two steps
- We can learn this also from the polynomial

- Let's multiply the odp's
	- \rightarrow $(fx + gx^2 + fx^2) \cdot 2gx = 2fgx^2 + 2ggx^3 + 2fgx^3$

- \rightarrow 2 $fgx^2 + 2ggx^3 + 2fgx^3$ describes
	- λ all the elementary membranes created by all divisions
	- \triangleright their multiset contents, and

 \boldsymbol{b}

 $2g$

the number of the corresponding computation steps

 $[ab]$

 $[fb] \setminus [\bullet b]$

 $[fg] \setminus [fg]$ $[gb] \setminus [fb]$

 $[gg]$ $[gg]$ $[fg]$ $[fg]$

Let's see:

 \boldsymbol{a}

 \int

 g f

- We are not ready
	- \triangleright We cannot calculate the product of all the odp's in polynomial time
	- **But we can calculate efficiently the answer to the following** question:
		- How many copies of an object are in those elementary membranes that are created at the nth step of the system and cannot be further divided?

 $[a b]$

 $[fb]$ \sqrt{b}

 $[fg]$ $[fg][gb]$ $[fb]$

 $[gg]$ $[gg]$ $[fg]$ $[fg]$

- \triangleright Consider the previous example and the object f
- Substitute 1 for each variable that is neither f nor x in
	- \rightarrow $(fx + gx^2 + fx^2) \cdot 2gx$
	- \rightarrow $(fx + x^2 + fx^2) \cdot 2x = 2fx^2 + 2x^3 + 2fx^3$
		- \triangleright Two copies of f were created at the 2nd step
		- \triangleright Two copies of f were created at the 3rd step

- Consider now the previous example and the object g
- Substitute 1 for each variable that is neither g nor x in
	- \rightarrow $(fx + gx^2 + fx^2) \cdot 2gx$
	- $\rightarrow (x+gx^2+x^2)\cdot 2gx$
	- $= 2gx^2 + 2ggx^3 + 2gx^3$
	- $= 2gx^2 + (2g^2 + 2g)x^3$

SIMULATION IN POLYNOMIAL TIME

Using this we can answer the following question now efficiently:

- **> Which and how many objects are released to the parent** membrane by the elementary membranes during a particular step of the system?
- We can build a polynomial time algorithm to simulate all membranes

We can calculate efficiently:

- How many steps are needed to dissolve the all elementary membranes
- **What objects get** the parent
- What happens with the rest of the system

SIMULATION IN POLYNOMIAL TIME

Using this we can answer the following question now efficiently:

- **Nich and how many objects are released to the parent** membrane by the elementary membranes during a particular step of the system?
- We can build a polynomial time algorithm to simulate all membranes

Can we deal with that this membrane can contain exponentially many objects?

CONCLUSIONS

- **Mhat do we expect?**
	- \triangleright The answers to the red questions are positive
	- We can extend the method to out-communication rules
	- Maybe we can extend it to unit evolution rules (seems to be not so easy)
	- Maybe this method suits for implementations
- ▶ We have no idea yet how to extend this method to arbitrary polarizationless P systems