P-Lingua 5: A tutorial J

Ignacio Pérez-Hurtado, David Orellana-Martin

17th Brainstorming Week on Membrane Computing

5-8 February 2019, Sevilla, Spain

3 e

Introduction

P-Lingua: A programming language for membrane computing (https://p-lingua.org/)

@ Presented for the first time in the 6th BWMC (2008)

2/ 0 wan

€ > © [0 wwpinguaog

X

1)
-Lihgua

navigation
= Main Page.

= Appiications

= Examples
= dowrload
lnks

= P systems websie
= Research Group on

Natural Computing
= Universiy of Savile

searcn

Go | Search
toolbox

= What inks here
= Rolated changos

= Permanent ik

2 Login create accoun
page | [(discussion | | viewsource | | isiory

Main Page
“This websita Is also under HTTPS secure protocol &

P-Lingua language for Membrane Comp aims to be a standard to define P systoms . It and Its assoclated tools have been developed by members of the
Research Group on Natural Computing &, at the University of Sevile &, Spain

We provide P-Lingua and its associaled tools as a lree and reusable package for the development of softwarefhardware applicaons capable of simulate P system computations,
In order

ad pLinguaCore has
handie input files (efther in XML format or in P-Lingua format) defining
model. For the sake of sol

s a soltware framework for celllike, ssue-like and spiking neural-like P system simulators. Iis able o
a number of diferent

Moreover, the: cludes several builtn simulators for each
tem definition to otpuL forma (currently XML format and binary format are available). PLinguaCore is
ot a closed prodct, but it can be extended to accept new Input or oUTpU formats and also new Models or SMUIators.

© portabilty, pLi ap

There are several appiications in development using P-Lingua. This websie i
aims to be a meeting point for users and developers through the use of forums (an user account s needed).

technical information. In additon, this site:

The main developer of P-Lingua and is related tools is Ignacio Pérez-Hurtado [1] %,
Please, contact us for any suggestion or comment.

Latest version

The latest version of P-Lingua and pLinguaCore Is now 4.0, released on 28/09/2013. It has new features such as more supported models

Publications

The main publications about P-Lingua and PLinguaCore up to now are:
Journal Papers
= A P-Lingua based Simulator for Tissus P Systems with Cel Separation
1. Pérez-Hurtado, L. Valencia-Cabrera, J.M. Chacen, A. Riscos-Nufiez, M.J. Pérez-Jiménez
Romanian Journal of Information Science and Technology, 17 , 1 (2014), 88-102.
= A P-Lingua based simulator for Spiking Newal P systems

Introduction

pLinguaCore: A Java library to parse and simulate P-Lingua files

%/ B e mert X\ o
€ > © [0 wwpinguaos ax¥ @8 @
2 Login/ create account =

page | [discussion | | view sourco | | isory |
PLinguaCore
L Java formats. This ibrary reports the rules and membrane struclure read Irom file where & P system is defined,
1) detects erors i the file, reports them. And, i the P system is defined n P-Lingua format,locates the rror on the fle. P a
L 3T L | Vel as aking nto accountall ptons defined. L epors he simulton process, by dispaying thecurrent conigualon as (ext an reporting the elapsed me. Eventualy, s bty arsiates
= files, which define a P system, between formats, for insiance, from P-Lingua formatto binary format. This library is free software published under GNU GPL 2 license, 5o everyone who is
“ interested can i 2
= Main Page
= Forum “The last version of pLinguaCore is pLinguaCore 4.0
= P-Lingua .
= Tools Versions

= plinguaCore 4.0

= downlond

= Itls added supportfor Spiking Neural P systems
e « Itis added support for Kemel P systems.

= Itis added support for Tissue-Like P systems with Cell Separation Rules.
= Some bugs are fixed.

= P systems websie
= Resoarch Group on
Natural Computing = plinguaCore 3.0
® Universily o Sevile = Itis added the simulation aigorith called DCBA for Population Dynamics P systems (PDP systems).
search = Itis added a new binary output il for PDP systems.
= Stochastic P systems are discontinued.
T = Some bugs are fixed.

« pinguaCore 2.1
toolbox

= Itis added lissue-ike P systems with division rules.
= Some bugs are fixed

= What inks here

= Related changes

© U e = pLinguaCore 2.0
= Special pages .

= Printabie version

= pLinguaCore 106
= Permanent link

= The nitial version, it is able (o define active membranes P systems with division rules

Documentation

Introduction

pLinguaCore: A Java library to parse and simulate P-Lingua files

@ pLinguaCore 1.0

o Initial version

pLinguaCore 2.0

o Cell-like P systems with membrane division
o Transition P systems

pLinguaCore 2.1
o Tissue-like P systems with cell-division

pLinguaCore 3.0

o PDP systems (several simulation algorithms, DCBA, Binomial...)
o Tissue-like P systems with cell-separation

pLinguaCore 4.0

o Kernel P systems

e Spiking Neural P systems

o Tissue-like P systems with cell-separation RGNC

Introduction
pLinguaCore: A Java library to parse and simulate P-Lingua files

XML .
|::> Simulator

T Binar .
= [P (o]) [P | [
&

Another

ot Simulator
\-_/
-\/
The input
e &)
U RGNC

Introduction

pLinguaCore: A Java library to parse and simulate P-Lingua files

@ Extending pLinguaCore for a new P system variant:

Decide a new name to identify the variant.
Extend the syntactic/semantic parser.
Implement code to generate output formats.
Implement one or more simulation algorithms.

@ All is hard-coded in the library!

3

6/23

Introduction

pLinguaCore: A Java library to parse and simulate P-Lingua files

Diagram of the general software methodology to add a new variant in
pLinguaCore:

3

Introduction

pLinguaCore: A Java library to parse and simulate P-Lingua files

Diagram of the general software methodology to add a new variant in
pLinguaCore:

P-Lingua 5: An extension with semantic features
https://github.com/RGNC/plingua

(]

A new tool written from scratch in C/C++

A generic compiler for the command-line:

e Input: P-Lingua files
e Output: P system definition in XML, JSON or binary format

P system variants are defined as sets of rule patterns

Rule patterns can be written in P-Lingua files

Two derivation modes for rules:

o Maximal parallel mode
e Bounded parallel mode

@ A C++ generic simulator for the command-line

ux

RGNC

P-Lingua 5: An extension with semantic features

Example: Cell-Like P systems with membrane division rules

!dam_evolution {
?[a -> v]’h;
?[la -> 1’h;
}
!dam_send_in {
a ?[1°’h -> ?[b]’h;
}
!dam_send_out {
?[al’h -> b ?[1’h;
}
'dam_dissolution {
?[a]’h -> b;
?[al’h > ;

ur

RGNC

P-Lingua 5: An extension with semantic features

Example: Cell-Like P systems with membrane division rules

'dam_division {

?[al’h ->
?7[al’h ->
?[al’h —>
7[al’h ->

}

?[1°h
7[b]’h
?[1°h
7[b]’h

?[1°h;
?[1°h;
?[b]l’h;
?[c]’h;

@model (membrane_division) =
dam_evolution,
// evolution rules are maximally parallel
@1{dam_send_in, dam_send_out, dam_dissolution, dam_division};
// upper-bound for send_in, send_out, dissolution, division is 1

us

RGNC

10/23

P-Lingua 5: An extension with semantic features

Example: Cell-Like P systems with membrane division rules

@model<membrane_division>

@include "membrane_division_model.pli"
def Sat(m,n)

{

/* Initial configuration */

@mu = [[]1°2]°1;

/* Initial multisets */
@Gms(2) = d{1};

/* Set of rules */
[d{k}]’2 --> +[d{k}]-[d{k}] : 1 <= k <= n;

ur

RGNC

11/23

An extension of P-Lingua for semantic features

Example: Transition P systems

'transition_evolution /* Limited to rules with 3 inner membranes */

{

[a ->
[a ->
) [a >
(?) [a —>

(?) [a
) [a

[

[

[

[

[

[a [
() [al
) [a L
[

[

() [a [
() [al

v]’h;

v, @d]’h;
v]’h;

v, @d]’h;
-=> v [w]’h1] ’h;
--> v [w]’h1]’h;
--> v [w]’h1]’h;
--> v [w]’h1]’h;

1’h1
1’h1
1'h1
1°h1
1’h1
1’h1
1’h1
1’h1
1’h1
1’h1
1°h1
1'h1

[1°h2
[1°n2
[1°h2
[1°n2
[1°h2
[1°n2
[1°n2
[1°h2

}~gmodel(transition) =

Us

transition_evolution;

--> v [w1]’h1 [w2]’h2]’h;
--> v [wi1]l’h1 [w2]’h2]’h;
-=> v [wil’h1 [w2]’h2]°h;
-=> v [w1]l’h1l [w2]’h2]’h;
[1°’h3 -=> v [w1]l’h1 [w2]’h2 [w3]’h3]’h;
[1°’h3 --=> v [w1]l’h1 [w2]’h2 [w3]’h3]’h;
[1°’h3 --=> v [w1]l’h1 [w2]’h2 [w3]’h3]’h;
[1°h3 --> v [wi1]l’h1 [w2]’°h2 [w3]’h3]’h;

RGNC

12/23

An extension of P-Lingua for semantic features

Let's see more examples from Github

x /@ RaNClplingua: The P-L x

€ >Clacs

guro /github.com a %

Pull requests Issues Marketplace Explore

[RGNC/ plingua @unwatch 1 kstar o YFork o
<> Code Issues o Pull requests o Projects o Wiki Insights Setiings
The P-Lingua language for Membrane Computing Edit

Manage topics

©$9 commits ¥ 1 branch O 0 releases 22 2 contributors b GPL-3.0

Branch: master~ | New pull request Create newfile Upload files Find file [NCELEUIEEIIEET]

(et e

imulator Latest commit 6a0758b 18 hours ago
B examples First version of Psim simulator 18 hours ago
i include First version of Psim simulator 18 hours ago
W sic First version of Psim simulator 18 hours ago
B gitignore Bug fixed and PDP model 3 months ago
E) LICENSE Initial commit 3 months ago
E) Makefile First version of Psim simulator 18 hours ago
E) README.md Initial commit 3 months ago
README.md ;

] plingua

Tha B 1 inania lanmiann far Mambrans Sammnfine

13/23

An extension of P-Lingua for semantic features

Rule patterns

The P-Lingua parser is able to recognize rules with a very flexible syntax:

p

al,m Qn,1 Qn,mp10n

u[vl[v171];¥117’11 . [Vl’ml]hl,mll]ztll . [vn[vn,l]hn,1 - [Vima L T

9y or <2y
B, 8, B Bs,
wolwa[wialglt - [Winlg 150 - [welws1lgrt - - - [ws, g]2

3

14 /23

An extension of P-Lingua for semantic features

Rule patterns

where:
@ p is a priority related to the rule given by a natural number, where a
lower number means a higher rule priority.
@ ¢ is a probability related to the rule given by a real number in [0, 1].
° aj,;;,1<i<nl<j<mjand 3, B;;,1<i<s1<j<r are
electrical charges.
@ hi,hij;1<i<nl1<j<mjandg;,gi;,1<i<s,1<j<rare
membrane labels.
o uvi,vi;,1<i<nl1<j<mjand wj,w;;,1<i<s,1<)<rare
multisets of objects.
: RGNC

15/23

An extension of P-Lingua for semantic features

Rule patterns

Next, there is a list of P-Lingua rule examples matching the general rule
syntax:

@ a,b [d,ex2 1’h —-> [f,g]’h :: q; where q is the probability
of the rule.

o (p) [al’h --> [b]’h; where p is the priority of the rule.

@ [a --> b]’h;, the left-hand side and right-hand side of evolution
rules can be collapsed.

@ +[al’h --> +[b]l’h -[c]’h; a division rule using electrical charges.

@ [al’h --> ; a dissolution rule.

@ al]J’h --> [b]’h; a send-in rule.

e [al’h --> b[]’h; a send-out rule.

@ [a -—> #]’h; the symbol # can be optionally used as empty

multiset.
lfﬂ" [al’1 <--> [b]’0; a symport/antiport rule in the tissue-like
" “framework. RGNG

16 /23

An extension of P-Lingua for semantic features

Rule patterns

@ The general rule syntax is very permissive

@ We introduce a rule pattern matching language to define the subset

of allowed rules

'rule-type-id
{

patternil
pattern2
patternN

I

us

RGNC

17/23

An extension of P-Lingua for semantic features

Derivation modes

@ From an informal point of view, we can see a derivation mode as the
way a step of a P system is performed.

@ In this extension of P-Lingua, we provide two derivation modes

o Maximally parallel derivation mode (max). In this mode, we only take
multisets of rules that are not extensible.

o Bounded-by-rule parallel derivation mode. In this mode, an
upper-bound is defined for multisets of rules that can be selected.

@ A P system model can be defined in this new extension of P-Lingua
by aggregating the allowed rule patterns and its corresponding
derivation modes.
'y

18/23

Derivation modes

[} bOU”dBl,...,B,

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,

o Bi=j,je{ab,...

RGNC

19/23

Derivation modes

] bou”dBl,...,B,
o Bi=j,je{ab,...

}

o Bi=pn(B1,...,Br)

RGNC

19/23

Derivation modes

@ boundp, . B,
o Bi=j,je{ab,...}
o Bi=pn(B1,...,Br)

o Maximally parallel derivation mode (max).

RGNC

19/23

Derivation modes

[} bOU”dsl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevo/ution,ﬂl (send —out,send —in,dissolution, division)

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

3

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

3

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

o0

3

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

RN

evolution 1

3

19/23

Derivation modes

[} bOU”dsl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

/OO\1

send — out send — in dissolution division

3

19/23

Derivation modes

[} bOU”dsl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

/4\1

send — out send — in dissolution division

3

19/23

Derivation modes

[} bOU”dsl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

4
/N
2

send — out send — in dissolution division

3

19/23

Derivation modes

[} bOU”dsl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

4
RN
evolution 2

N

send — out send — in

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

evolution ?

send — out send —

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

evolution ? /

send — out send —

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

evolutlon ? /

2 send — out send

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

evolutlon ? /

2 send — out send

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

evolutlon ?

2 send — out send —

RGNC

19/23

Derivation modes

[} bOU”dsl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))
4

/’ evolution 2
VRN

2 send — out send — in

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

evo/utlo/n \ /
;N

2 send — out send —

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

evo/utlo/n \ /
;N

3 send — out send —

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))
4

/’ evolution 2
VRN

3 send — out send — in

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))
4

/’ evolution 2
VRN

4 send — out send — in

RGNC

19/23

Derivation modes

[} bOU”dsl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

4
RN
evolution 2

N

send — out send — in

Not only syntax, but also semantics definition!

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

4
RN
evolution 2

N

send — out send — in

Not only syntax, but also semantics definition!

S Take into account!
us

RGNC

19/23

Derivation modes

[} bou”dBl,...,B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

/4%

evolution 2 <4

N

send — out send — in

Not only syntax, but also semantics definition!

S Take into account!
us

RGNC

19/23

Derivation modes

[} bOUﬂdBLm’B,
e Bi=j,je{ab,...}
o Bi=[n(Bi,....B)
o Maximally parallel derivation mode (max).

boundevolution,ﬂl(send—out,send—/n,disso/ution,division)
e Bounded-by-rule parallel derivation mode.

bOUnd54 (evolution, B2 (send — out,send —in))

4
/_.) evo/utio/n %4
/N

Only one appearance .
Y PP send — out , send — in

of each one! _

Not only syntax, but also semantics definition!

u% Take into account!

RGNC

19/23

P-Lingua 5: The command-line simulator

A command-line simulator has been written in C4++

@ It reads the output generated by the P-Lingua compiler
(XML/Json/binary file defining the P system)

o |t optionally reads a file with the initial configuration
@ It simulates the P system following the defined semantics in the file

@ It outputs one computation until a halting state or a number of
simulation steps

@ It can be run in a non-randomized mode, where it outputs always the
same computation for a given P system

@ The final configuration is written to a file, the simulation can be
re-started

e @
Ui e

20/23

Conclusions

@ A new version of P-Lingua has been designed including rule patterns
and semantic definitions

a command-line compiler has been written from scratch in C/C++

a command-line simulator tool is also provided

(]

hard-coding the definition of the P system variants is not longer
necessary

this tool allow the designers to " play” with experimental variants of P
systems

3

21/23

Future work

@ To refine the syntax for semantic ingredients in P-Lingua.

@ To cover variants such as Spiking Neural P systems and Fuzzy
Reasoning Spiking Neural P systems

@ To write simulators for parallel architectures, such as multi-core
processors, pthreads, GPUs, FPGAs...

@ To design optimized simulation tools for interesting case studies

ur

uE

Thanks for your attention!

RGNC

23/23

