P Systems with States: Polymorphism on Steroids

> Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Marion Oswald

> > BWMC14

P Systems with States

Usually – no explicit state

P Systems with States

Usually – no explicit state

Consider some parts as state

States: Halting

state = evolve

state = halt

States: Toxicity

States: P Automata

Acceptance by final states.

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Marion Oswald, BWMC14

Membrane Annotations as States

- polarisation
- permeability
- energy
- ▶ . . .

State =
$$(\alpha, \beta, \gamma)$$

- graph control
- Iabel selection
 - complete graph
- time-varying systems
 - periodicity

- graph control
- Iabel selection
 - complete graph
- time-varying systems
 - periodicity

(no dependence on membrane contents)

- graph control
- Iabel selection
 - complete graph
- time-varying systems
 - periodicity

(no dependence on membrane contents)

- graph control
- Iabel selection
 - complete graph
- time-varying systems
 - periodicity

(no dependence on membrane contents) polymorphic P systems

(new state depends on rules and membrane contents)

step	skin			$\overline{}$
0	a		$\left(2: \mathbf{a} \to \mathbf{a}^2 \right)$	
1	a^2		- 2	
			2^2	
		l	a	

skin			
a			$\left(2: \mathbf{a} \to \mathbf{a}^2 \right)$
a^2			a ²
			lR
			a^2
	skin a a ²	skin a a ²	skin a a ² a 1L

step	skin	_			
0	a			$\left(2: \mathbf{a} \rightarrow \mathbf{a}^2 \right)$	
1	a ²		$\left[a \right]_{1L}$	a^4	J ₁ R
				a^2	

step	skin		
0	а		$2 \cdot \mathbf{a} \rightarrow \mathbf{a}^2$
1	a^2		2.u /u
2	a^8	(a) ₁₁	a ⁸
			a ⁸

step	skin		
0	а		$2 \cdot a \rightarrow a^2$
1	a^2		$2 \cdot \mathbf{a} \rightarrow \mathbf{a}$
2	a ⁸	(a),	a ¹⁶
3	a^{64}		
	I		a^{64}

step	skin		
0	а		$2 \cdot a \rightarrow a^2$
1	a^2		
2	a ⁸	(a) ₁₁	a ³²
3	a^{64}		
4	a^{1024}		a^{1024}
		l	

step	skin	
0	а	$2 \cdot \mathbf{a} \rightarrow \mathbf{a}^2$
1	a ²	
2	a ⁸	$ (a)_{11} a^{32} _{1D}$
3	a^{64}	
4	a^{1024}	a^{1024}
n	$a^{2^{\frac{n(n+1)}{2}}}$	

General framework, look into concrete cases!!

- General framework, look into concrete cases!!
- Anything can depend on states
 - even the derivation mode!

- General framework, look into concrete cases!!
- Anything can depend on states
 - even the derivation mode!
- Infinite alphabets?
 - states = applicable multisets of rules
 - extract specific parts of the observed states?

- General framework, look into concrete cases!!
- Anything can depend on states
 - even the derivation mode!
- Infinite alphabets?
 - states = applicable multisets of rules
 - extract specific parts of the observed states?
- Practical applications?
 - parameters depending on states may be easy to implement