
The Fundamental Circuits Design for P 

Systems Implementation

Zeyi Shang

Southwest Jiaotong University

Université Paris Est Créteil Val de Marne



- Membrane computing is a newly parallel processing paradigm, 
which can be truly obtained on a parallel hardware, not just 
software simulation. 

- Design the parallel architectures and functional modules 
within it that conform to P systems’ attributes in re-
programmable hardware devices.  

Why we need hardware implementation of P systems?

How to implement P systems on hardware? 



The main work of this paper includes: the 
.

It seems that the more the 
processing nodes, the faster the 

processor.

Other
Parallel 

paradigm

Membrane
computing

Multi-core single
CPU for PC

Multi-CPU with
multi-cores

for mainframe
computer

What are the differences between P system 
paradigm and the multi-core/CPU parallel 
processing? 



The Arithmetic Operations in the Processing of P systems

Addition/

Subtraction

MultiplicationDivision

1 32



Configuration 
Complete 
Solution

The analysis of parallelism and non-determinism

Maximal 

Parallel

Derivation

Mode:



Division
Take a cell-like symbol objects P system evolving in maximal

parallelism mode as an example. Calculating the maximal times of

application (instances) of each rule in every region is the first computing

step. This process comprises a serial of divisions and a logic MIN

operation.

For each object type in a region, a division whose dividend is the number

of that object type in the multiset of objects and the divisor is the number of

objects in a given rule’s left-hand-side is performed. The quotient of a

division is the integer multiple (times) of the amount of that type in the

multiset of objects comparing to the quantity of that object in the definition

of the considered rule.

MIN(quotient1, quotient2, quotient3, …) gives the maximal instances of

the rule.



Multiplication

After each maximal instance of rule is obtained, we should produce a

multiset of rules with respect to the maximal parallelism evolving mode.

The range of each number of the rules in the multiset of rules is 0 to the

maximal instance. Assume that we elaborate a algorithm to generate the

wanted multiset of rules and a multiset of rules selected to evolve the

region configuration is 𝑟1
𝑎𝑟2

𝑏𝑟3
𝑐⋯.

To compute the quantity of objects consumed and produced by the

multiset of rules, we should perform a set of multiplications. The exponent

of each object type in a definition of rule should multiply the exponent a, b,

c, ⋯.

The product of objects in LHS is the number of objects consumed and

the product in the RHS is the amount generated.



Addition/Subtraction

The next step carries out the update of multiset of objects which store in

array of registers in terms of the products gained in the multiplications.

The LHS products should be subtracted from the relevant registers,

whereas the RHS products should be added to the respective counterparts.

Once all the additions and subtractions are executed, the multisets of

objects are updated.

The arithmetic operations are indispensable for the implementation of

membrane computing. If these operations are performed in parallel in

hardware, we have a parallel processing device then.

As we can anticipate, it is a common phenomenon that more than one

rule update the same register, which cause conflicts. Appropriate strategies

are needed to cope with this kind of conflict.



Example: Adder

Different with the software modeling, when we program with Hardware

Description Language (HDL) such as Verilog or VHDL, we do not just

program some algorithms but design digital circuits directly or indirectly.

Mastering the grammar of the HDL is just the fundamental tool, the digital

circuits design knowledge play the kernel role in elaborating a sophisticated

circuits.

If we want to perform addition, we should design an adder first. An

adder can be designed from different view of points. From a more intuitive

way, a ripple-carry adder is easy to design, shown in next figure. The

drawback of this kind of adder is that the delay is great. This fact will

impair the performance of the adder when the bits number grow. We need a

more efficient method to build a fast adder.



Half Adder
exclusive-or gate (XOR)

AND gate

There are no carry signals from other bit 

in the half adder because the total bit 

involved is only 1.



Ripple-carry adder

A full adder perform 

1-bit addition of two 

multi-bit binary 

numbers. The total 

bits are larger than 1.



Ripple-carry adder

The right figure show the first 2 

bit of a ripple-carry adder. The 

slow speed of the ripple-carry 

adder is caused by the long path 

along which a carry signal must 

propagate. The total number of 

gate delays along the critical

path is 2n + 1. n is the bit 

number.



Carry-lookahead adder

For carry-lookahead adder, all carry 

signals are produced after three gate 

delays: one gate delay is needed to 

produce the generate and propagate 

signals g0, g1, p0, and p1, and two 

more gate delays are needed to 

produce c1 and c2 concurrently. 

Extending the circuit to n bits, the 

final carry-out signal cn would also be 

produced after only three gate delays. 



Kernel Grid

4-bit carry-lookahead
adder

With the bit number rises, the 

complexity of carry-lookahead

adder circuit increase dramatically. 

The fast computing speed comes at 

the price of complicated wire 

interconnection.



Numerical P system application

Numerical P systems (NPS) is 

the only one model so far that 

have been put into real-life 

applications, in the autonomous 

mobile robot control. The right 

figure shows a example of NPS. 

We can see that the all processes 

are algebraic operations. The 

core work is still handling 

arithmetic operations. 



A NPS Controller 



Problem: how to obtain the Vivado
learning materials besides the User 
Guide?



Help me: how to obtain the Vivado
learning materials besides the User 
Guide?




