o) QRN EEERE AT BT
& Nature-Inspired Computation and Smart Grid Lab
QNICSG I

The Fundamental Circuits Design for P
Systems Implementation

Zeyl Shang

Southwest Jiaotong University

Université Paris Est Créteil VVal de Marne

o | GEAEERREAN TR T
CZWCSG Nature-Inspired Computation and Smart Grid Lab

Motivation of Hardware Implementation %

Why we need hardware implementation of P systems?

'

-Membrane computing is a newly parallel processing paradigm,
which can be truly obtained on a parallel hardware, not just
software simulation.

' How to implement P systems on hardware?

- Design the parallel architectures and functional modules
within it that conform to P systems’ attributes in re-

programmable hardware devices.

AEAEEFR A THT

Nature-Inspired Computation and Smart Grid Lab

What are the differences between P system
paradigm and the multi-core/CPU parallel

processing?
Multi-CPU with
Other : ; - multi-cores
Parallel | Multi-core single | | ¢ i e | [Membrane

CPU for PC . computing

' paradigm computer

It seems that the more the
processing nodes, the faster the
processor.

=0 AEATEH RN ETHT
NI o~ Nature-Inspired Computation and Smart Grid Lab
A\ | oG ==

The Arithmetic Operations in the Processing of P systems

\ \ v

Division Multiplication Addition/
Subtraction

€ pEAEE R AN ZHT
f N'I - Nature-Inspired Computation and Smart Grid Lab

The analysis of parallelism and non-determinism

“ .] Complete
Configuration Solution

1 1
3 \ / 13 .15 _10
13 ¢ 15 _10 ¥ ‘ !
a%h 4 N a“b’c I 4 2 2
i C pPolzald D] _)) o1y INalya g Ig
LK, : .a'zf.r(."c' =3 ean .. 5-1 3 5 erlvatlon I-III‘ISIHH J?}‘lﬂrlfl
11 - Ial " C E _} " Mode' :%/— \
.o ':'IEFEC'-E S 4 3 . . r3 3 9 .12 _14
TR ry, - bcte” — - ZETESE 14 sy bic~e
- - .-3 3 9 - i 2 + *
I]3 . i EJ" O o= e J‘:“ . {JECEEH —3 . MaXImaI 5) I-.:]-E f31I33
Kyt a'b’ct o Parallel ufipfs I Bty Lol Ialo
4 32433 314 32
2 4 N ‘ff ™ r r
. 1310 _11 8 ~11 _9
r/r EEI ug& \ cte'g o’ f g A a2 al
) 9 o If']af'mg]]
- 2 3
r, - Ezfsg — ass Iy - c'e g = e 'rEI'rEE "rzlrz_']
2 T FaTy s
. 1.3 8 2443 Lyl
n, :ef'gt > .. Iptceg — . Ty lyy Iyl . s
Iy g = I, clelg’ - . 1 r Tylyy Ll
21 23
\ AN 7 O N v,

GRAEERREAETHT

Nature-Inspired Computation and Smart Grid Lab

Division NI

Take a cell-like symbol objects P system evolving In maximal
parallelism mode as an example. Calculating the maximal times of
application (instances) of each rule In every region Is the first computing
step. This process comprises a serial of divisions and a logic MIN
operation.

For each object type In a region, a division whose dividend is the number
of that object type in the multiset of objects and the divisor is the number of
objects in a given rule’s left-hand-side Is performed. The quotient of a
division is the integer multiple (times) of the amount of that type in the
multiset of objects comparing to the quantity of that object in the definition
of the considered rule.

MIN(quotientl, quotient2, quotient3, ...) gives the maximal instances of
the rule.

GRAEERREAETHT

Nature-Inspired Computation and Smart Grid Lab

Multiplication N

After each maximal Instance of rule Is obtained, we should produce a
multiset of rules with respect to the maximal parallelism evolving mode.
The range of each number of the rules In the multiset of rules Is 0 to the
maximal Instance. Assume that we elaborate a algorithm to generate the

wanted multiset of rules and a multiset of rules selected to evolve the

region configuration is rr2rs ---.

To compute the quantity of objects consumed and produced by the
multiset of rules, we should perform a set of multiplications. The exponent
of each object type in a definition of rule should multiply the exponent a, b,
C, cee

The product of objects in LHS is the number of objects consumed and
the product in the RHS is the amount generated.

GRAEERREAETHT

iti : ature-Inspired Computation and Smart Grid Lab
Addition/Subtraction ™ ey hupuet b st Pl

The next step carries out the update of multiset of objects which store In
array of registers in terms of the products gained in the multiplications.

The LHS products should be subtracted from the relevant registers,
whereas the RHS products should be added to the respective counterparts.

Once all the additions and subtractions are executed, the multisets of
objects are updated.

The arithmetic operations are indispensable for the implementation of
membrane computing. If these operations are performed in parallel In
hardware, we have a parallel processing device then.

As we can anticipate, it iIs a common phenomenon that more than one

rule update the same register, which cause conflicts. Appropriate strategies
are needed to cope with this kind of conflict.

GRAEERREAETHT

Nature-Inspired Computation and Smart Grid Lab

Example: Adder NI

Different with the software modeling, when we program with Hardware
Description Language (HDL) such as Verilog or VHDL, we do not just
program some algorithms but design digital circuits directly or indirectly.
Mastering the grammar of the HDL Is just the fundamental tool, the digital
circuits design knowledge play the kernel role in elaborating a sophisticated
Clrcuits.

If we want to perform addition, we should design an adder first. An
adder can be designed from different view of points. From a more intuitive
way, a ripple-carry adder Is easy to design, shown In next figure. The
drawback of this kind of adder is that the delay is great. This fact will
Impair the performance of the adder when the bits number grow. We need a
more efficient method to build a fast adder.

Half Adder

Carry

X
+y

c 8

M

0 0 1 1
+0 + 1 +0 + 1
00 01 01 10

Sum

(a) The four possible cases

Carry Sum
Xy c §
0 0 0 0
0 1 0 1
1 0 0 1
11 1 0

(b) Truth table

Nlc

GRAEE RN TR T

Nature-Inspired Computation and Smart Grid Lab

exclusive-or gate (XOR)

y .

|
A —
_)7

S
(’?

(c) Circui’:\\\ AND gate

There are no carry signals from other bit
In the half adder because the total bit
Involved is only 1.

Ripple-carry adder .

Generated carries —= 1110

X = X X3X5X X
+¥ =y ¥352¥10
S - 34513.5'231;?0]. 1001

01111
+01010

Xi
Yi
(15)14
Ci
+ (10),9
(25) 19

(a) An example of addition

Civ1 €

(b) Bit position i

A full adder perform
1-bit addition of two
multi-bit binary
numbers. The total

bits are larger than 1.

GRAEE RN TR T

Nature-Inspired Computation and Smart Grid Lab

000§

(c) Circuit

Ripple-carry adder

The right figure show the first 2
bit of a ripple-carry adder. The
slow speed of the ripple-carry
adder Is caused by the long path
along which a carry signal must
propagate. The total number of
gate delays along the critical
path is 2n + 1. n iIs the bit
number.

’
A J’ Co
g

GRAEE R eA TR T
Nature-Inspired Computation and Smart Grid Lab

Nlc

YUY

Stage 1 Stage 0

GRASE R eANEHT

Nature-Inspired Computation and Smart Grid Lab

Carry-lookahead adder "«

For carry-lookahead adder, all carry
signals are produced after three gate ~ B
delays: one gate delay is needed to) U) U
produce the generate and propagate ——% | R
signals g0, g1, p0, and p1, and two
more gate delays are needed to

produce c1 and c2 concurrently. Lo
Extending the circuit to n bits, the LJJ U U
final carry-out signal cn would also be
produced after only three gate delays.

QEHAEEH e LTHT
NAI Nature-Inspired Computation and Smart Grid Lab
C

4-bit carry-lookahead RN
adder . . é)

With the bit number rises, the ge”” jE
complexity of carry-lookahead -
adder circuit increase dramatically. N[|
The fast computing speed comes at
the price of complicated wire

Interconnection.

1)
|

i
=
¥
z
i

GRAEE R eA TR T
Nature-Inspired Computation and Smart Grid Lab

Nlc
Numerical P system application
1

. . / .’I’ljl[l} \
Numerical P systems (NPS) is 222 = 1y, + 1]212
the only one model so far that 2/ ' ~
have been put into real-life #1213)s 222[1); 25.2(0)
applications, in the autonomous 23y — 12— 3T20 — 9 — 1| + 1zss + 1aas
mobile robot control. The right 3
figure shows a example of NPS. 71,3(2), 2251
We can see that the all processes 2213 — dwa s +4 — 2213 + Loz + 1z
are algebraic operations. The)
core work is still handling 21412 29412], 25412
arithmetic operations. Ty 4T 4Ts4 — 1z1a + 1as + 1|zss + L|zss

- 5,

A N PS CO nt rOI Ie r GgﬁcSG Nature-Inspired Co?nﬁ;gt%nirﬁ ?mfr;ﬂG%d#t\a%
p

~
Main c.._,, [{fﬂp“fﬂv ""r'z] (SelectObstacleAvoidanceCase E%[0] EX[0] h Ge!ectﬂ’aﬂFaﬂawCase ER[0] EX(0])
A [input,,] Ay, [-1*input,,, | Pr,,obstacle: D,,, +1(E,, —)E" Pr,wall: D, +1(E,, —)El,
Com'[0] Com3™[0] Com’™[0] Pr,.obstacle: C, +2(El, —)1| Comy™ +1| E, Pr,, wall: C, +2(E¥, —)1| Com +1| E,
Com!?'[0] Com#[0] Com'[0] Pr,.obstacle: C, +2(EL, —)1|Com!s' +1|E, Prowall: Gy, +2(EY —)1| Com's +1| E,
Com,[0] Com_[0] Com[0] Pr,.obstacle: Cy +2(E%, —)1| Com™ +1| E, Pr,wall:C_, +2(E", —)1|Com[™ +1|E,
E,[0] Th[1] D, [0] E,[0] Outpu®[0] Pr,,obstacle:2*D_ *E_ —1|EY Pr,,wall : 2*D,, *E, —1|EY
"rju dgeEnvironmentModel I GudgeRabomersObsmcfe) (f;dgeﬂabarSrareWaH)
E, [0]E,[0]E,[0] E..[0] £[1] E0g,0 [0] E0g i [0] Oua[-1] O [-1] Ewg,,[0] Ewg,[0] Wi [-1] W, [-1]
Pr_,_.case:C,, .+1(E. >)1|E., G, [-1] G [-1] Eog[-1] E0G, [0] EOG,[0] G [-1] G [-1] Ewg[-1] EWG,[0] EWG [0]
Pr,_, g case: Crgyy +1(E.)| E,, Pr,,obstacle,, : Cy +2(ES —)1|Com™ +1|E, Pr wall,, : Cy +2(EL] —)1] Comy +1] E;
Pt g.case: Ciyy +2(E. —)1|Com, +1| E, Pr,.obtacle,, : C, +4(Ey —)2|0,, +1|0,,, +1| Eog Pry wall, : Cpy o +4(El —)2|W,, +1|W,,, +1| Ewg
\Pr,,,case: G, +1(E, 2)IE,) || Pr,obtacle,, :C,+4(EX 5)210,, +110,, +1| Eog Pry.wall, : Cpy s +4(ES)2\ W, +1|W,, +1| Ewg
JudgeDistancelfMinimal Pr,,obtacle,, : 0% A, +4(E, —»)2| G°, +2| Eog Pr,,wall :0% A, +4(E, —)2|G" +2| Ewg
E™ [inputyy | D, [inputiy] Pr,,obtacle,, : 0% A,, +4(E, —)2| G +2|Eog Pr,wall, :0% A, +4(E, =)2| G, +2|Ewg
Pr, dist, :0+D__+ [[E;:‘ _)]1|Dm._n Pr.obtacle,, : O, + G; {Eag —>]l | EOG, Pr, wall : ngﬁ + G;_ (Ewg —>]l | EWG,
Py, dist,y, : D, (Efr —)1| Output™ Pr,,obtacle,, : O,y,, + Gy, (Eog >)1| EOG, Py, wall, : W, + G (Ewg —)1| EWG,
Ge!ectGaafReachfﬂgCase E, [0] En [':'] N :"“ s -.G I 2(E0G, Comy 11 Pry,wall :0#Th+2(EWG, —)1| Com,, +1|E,
w,0btacle, 10+ Th+2(EOG, —)1| Com,, +1| £, Pr,,wall : 0% Th +2(EWG, —)1|Com,, +1|E,
Pr.not _any:D,, +1(E,, —)E Pry.0btacle,, : O, + G, (Eog —)1| Eog,, Pty wall, : Wy, + G, (Ewg —)1| Ewg,,,
Pr,.not _any: C,, +2(Ex —)1|Com] +1| E, Pr,,obtacle, : O,y,, + G (Eog —)1| Eog,y,, Pryy.wall, : W, + G, (Ewg —)1| Ewg,q,
Prnot_any:2%D_ =E. —>1|E¥ Pr,,.obtacle,, : 0+ Th+2(Eog,,, —)1| Com's +1| E, Pr,, wail, : 0% Th+2(Ewg,, —)1| Com +1|E,
\Pri,mot_any:0+Th+2(E;7 —>)1| Com,, +1]Ey \\fr‘”abmc"eﬁ :0% Th+ 2(Eog, g, — 1] Comy™ HUE)| | \Pry,wall, :0% Th+2(Eng,,)1 Com +1|E,
2\ RN jj

> AEAEE RN THT
N'I e Nature-Inspired Computation and Smart Grid Lab

Problem: how to obtain the Vivado
learning materials besides the User
Guide?

Dje 1 I"‘-n.l,"'|'|'|.'1"_., W lp{:atﬂlm W 2 M [

Cores Interfaces

2 7 = 0 o

Name Al A4 Status License VLNV
hd Math Functions

v Adders & Subtracters
F Adder/Subtracter Production Included xilinx.com:ip:c_add

> Conversions
b CORDIC
> Dividers
= - - } v

Details

Selectan IP nterface or Repository to see details

GRASE R eANEHT
Nature-Inspired Computation and Smart Grid Lab

Nlc
Help me: how to obtain the Vivado

learning materials besides the User

Guide? _
Example Design
Ad derlsu btra Cter No example design is provided for this core.
v12.0

Test Bench
LogiCORE IP PrOdUCt G"ide No demonstration test bench is provided for this core.

o) AeEHAER LN THF
QG Nature-Inspired Computation and Smart Grid Lab

NIcSG L ————

Thank You !

